
Column #117: Timing is Everything

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 1

Column #117, January 2005 by Jon Williams:

Timing is Everything

The dreaded "I" word ... yes, everybody talks about it ... there's lots of bloviating about it ...
but what can we actually do with interrupts? Well, quite a lot actually – if we're patient and
work carefully. Thankfully, SX/B makes interrupt programming more manageable that we
thought it could be.

It wasn't very long after the BASIC Stamp and other BASIC-language microcontrollers
appeared that advanced users started asking about using interrupts. Well, neither the BASIC
Stamp family nor – to my knowledge – any of the micros in the same class support true
interrupts; it's just not practical in BASIC and I'm about to explain why. Please, please,
please ... don't fill my e-mail basket with flame mail telling me that your favorite BASIC-
language controller does do interrupts; let me qualify my statement.

Let's back up a bit for those that may be a bit new. An interrupt is just that: an event or
condition that suspends (interrupts) a program, forces the code into special section (usually
called an ISR, for Interrupt Service Routine), then goes back to what it was doing when the
interrupt occurred. Sounds pretty simple and straightforward, right? Well, not quite.

Here's why the BASIC Stamp and similar microcontrollers don't support true interrupts (as I
just described): What happens if we're doing a bit-bang serial input (as most micros in the

Column #117: Timing is Everything

Page 2 • The Nuts and Volts of BASIC Stamps (Volume 6)

BASIC Stamp class do) and we get an interrupt? Well, if we process the interrupt our serial
timing is going to get trashed and we will corrupt the data – this could lead to a very big
problem. The same problem holds true for any time-oriented function; things like SERIN,
SEROUT, PULSIN, PULSOUT, PAUSE, OWIN, OWOUT, etc. You get the idea.

How is this handled then? Well, the BS2p family has the ability to do what is called "pin
polling." When enabled, the BASIC Stamp 2p will check pin states in between high-level
instructions and act in accordance with the polling setup configuration (there are several
options). This pseudo-interrupt process can be very useful. Now, I realize that some BASIC-
language microcontrollers use hardware UARTs and timers, and this does help alleviate the
interrupt issue I just described. That said, the use of internal hardware occasionally limits
design flexibility as specific IO points on the micro are required. I'm not saying that any of
this is bad ... it just is.

Give Me an "I"

Okay, now that you know why the BASIC Stamp doesn't support true interrupts, what about
SX/B? For those of you who have checked it out you've no doubt seen that there is indeed
interrupt support. And yes, I'm going to show you how to use one type of interrupt this month
– and to do two things with it: receive and buffer serial data (coming from a BASIC Stamp
host) and to multiplex an eight-digit, 7-segment LED display.

The warnings I gave about interrupts above apply to SX/B – the difference is that SX/B
allows interrupts any time you configure them. So, if you're going to be using interrupts in an
SX/B program, you should not be using any of the time-oriented functions I mentioned earlier
(note that SX/B does not have the 1-Wire commands of the BS2p).

As this is going to be a bit of a ride, let's get right to it. I was in my favorite store the other
day (yes, Tanner Electronics in Dallas) and found a surplus eight-digit, 7-segment LED
display that cost a dollar; that's right, one dollar. How could I not buy it? The question now
was control. It's a common-cathode display, which means that the segment cathodes for all
eight digits are tied together. The only way to use such a display properly is with a
multiplexing controller. Of course I could use MAX7219, but they're not cheap and not easy
to find anymore. Why not roll up my sleeves and create my own controller?

The idea was to create a serial LED controller that is AppMod protocol compatible, which
means it could controlled from one BASIC Stamp pin, and even share that pin with the line
follower we created last month. While on the surface this seems a simple task, it does present
a serious challenge. To use the display properly, each active digit has to be refreshed at a

Column #117: Timing is Everything

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 3

regular rate. If we weren't doing anything else and the display was static we could handle this
in a program loop, especially in a compiled language like SX/B. The "problem" is that we
want to be able to receive and buffer serial data at the same time. What this means for us,
then, is that we will create an interrupt-driven program that multiplexes the display and
handles the serial input.

Bit-Bang Serial – Interrupt Style

Take a look at Figure 117.1; this shows the structure of a serial byte in True (input idle state is
high) mode. The stream begins with a start bit; this actually lets the receiver sync up and get
ready for the incoming data bits, which will arrive LSB to MSB. At the end of the stream is a
Stop bit period. Under non-interrupt conditions the processor will simply loop until the serial
line goes low to indicate a start bit. A timer is set for 1.5 bit periods so that the first bit is
sampled in the middle of its period. After that, the timer is reloaded with the bit period and
the rest of the sampling happens in a loop. If you want to see this for yourself, use SERIN in
an SX/B program and look at the assembly code that gets generated.

Figure 117.1; Structure of a serial byte in True mode

But in our project we can't sit around waiting for the bit to come in as we've got to update the
display periodically. What we have to do is sample the serial line at a rate that will let us
accurately capture the incoming data. So how fast do we sample? Well, I actually checked
with programmers that are much better at this stuff than me, and the consensus was that when
doing interrupt-driver serial input, one should sample the serial line at least four times per bit
period.

Column #117: Timing is Everything

Page 4 • The Nuts and Volts of BASIC Stamps (Volume 6)

Okay, decision time. In order to know how fast to sample the serial line we need to know
what baud rate we want to support. For this project I decided to go with 9600 baud as this is
somewhat standard for serial accessories and supported by most micros. And if we can
sample at 9600 baud, then lower baud rates will be no problem; they'll simply have longer bit
timing periods.

At 9600 baud the bit period is 104 microseconds (1 / 9600). If we want to sample four times
per bit period, we have to do that every 26 microseconds. So, that's our first hurdle: setup the
interrupt so that it activates every 26 microseconds. To do this we're going program the SX to
create a periodic interrupt based on an internal value called the RTCC (Real Time
Clock/Counter). This eight-bit value can be incremented by a change of state on an external
pin, or by the oscillator that runs the SX. Since we can have a range of speeds to run the SX,
we also have the ability to divide the oscillator frequency before sending it to the RTCC. This
is called the prescaler, and usually comes into play when we're running the SX at very high
speeds (e.g., 50 MHz).

For this project we'll run at 4 MHz so the prescaler won't be required. What we'll have to do
is setup the OPTION register in the SX to enable RTCC updates on the internal clock without
being divided by the prescaler. Here's how:

 OPTION = %10001000

This configuration allows RAM address $00 to access the RTCC (bit 7 = 1), enable interrupt
when the RTCC rolls over to zero (bit 6 = 0), increment RTCC on internal instruction cycle
(bit 5 = 0), and set the divide rate for the RTCC to 1:1 (bit 3 = 1). The SX28 documentation
(download from Ubicom) goes into all the details of the OPTION register.

Okay, now that we've enabled interrupts, how do we make that happen at the desired interval
of 26 microseconds? Here's what an empty ISR block looks like in SX/B:

 INTERRUPT
 ' ISR code
 RETURNINT 104

The key is actually at the end, the value following RETURNINT. This tells the SX how many
cycles to run before generating an interrupt. How then, did we come up with 104? We start
with the clock frequency of our project: 4 MHz. At this rate, each instruction cycle takes 0.25
microseconds. Since we want our interrupt to trigger every 26 microseconds, we divide the
instruction cycle speed into that. So, 26 divided by 0.25 is 104. This works because it is less
than 255 (the maximum value of the RTCC). If you're ever doing a project where your

Column #117: Timing is Everything

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 5

interrupt cycles calculate to greater than 255, you either have to reduce the oscillator speed or
enable the RTCC prescaler.

At this point our program will be interrupted every 26 microseconds, a rate that we've
determined is fast enough to sample the serial input line enough to accurately capture data at
9600 baud Okay, let's do it.

ISR_Start:
 ASM
 BANK $00
 MOVB C, Sin
 TEST rxCount
 JNZ RX_Bit
 MOV W, #9
 SC
 MOV rxCount, W
 MOV rxTimer, #BitTm15

RX_Bit:
 DJNZ rxTimer, Multiplex
 MOV rxTimer, #BitTm
 DEC rxCount
 SZ
 RR rxByte
 SZ
 JMP Multiplex

RX_Buffer:
 MOV FSR, #rxBuf
 ADD FSR, rxHead
 MOV IND, rxByte
 BANK $00
 INC rxHead
 CLRB rxHead.4
 ENDASM

Even though SX/B allows high-level code in the ISR, we're not going to do that for the serial
input. Why not? Well, there are two reasons: with assembly language we can be a tiny bit
more code-efficient, and – even more importantly – the code was already written and
working, so why not just use it?

Let me pause for a second and suggest that if you're serious about programming the SX, you
should consider the books that Parallax makes available: Exploring the SX Microcontroller by

Column #117: Timing is Everything

Page 6 • The Nuts and Volts of BASIC Stamps (Volume 6)

Al Williams (no, we're not related but he lives in Texas too), and Programming the SX
Microcontroller by Guenther Daubach. Both authors are great guys and very active in the
Parallax support forums. You can get an SX starter kit that includes both books, and if you're
on a budget, Al's book is available as a free PDF download.

Okay, back the code. On entering the ISR we want to make sure that we're pointing at the
serial variables so we issue a BANK $00 statement to do that. Then we sample the serial line
by copying it into the SX Carry bit. When the serial line is idle the Carry bit will now hold a
value of 1. Let's continue to go through the code as if we're in the idle state. The TEST
instruction will set the Zero bit if the register tested holds a value of zero. In our program, the
variable rxCount is used to count-down the bits as they're coming in; when rxCount is zero we
are not currently receiving a byte. The next instruction, JNZ, will force the program to jump
to RX_Bit when the Z flag is not set – this happens when we are receiving (rxCount > 0).
Since the Z flag is currently set, we will fall through the JNZ to where we load the value of 9
(start bit plus eight data bits) into the W register. After that we will check the Carry bit; if it is
one (and it currently is), we will skip the loading of rxCount and load the bit timer (rxTimer).
With rxTimer loaded with drop into RX_Bit where the timer is decremented and if not zero,
the serial routine jumps to the label called Multiplex.

This process will repeat every interrupt cycle until a start bit is received. You may be
wondering – as I did – why the rxTimer gets loaded when there is no start bit. Well, the
reason there is no bail-out on a no start bit condition is that it actually adds more code than
simply allowing the rxTimer to be loaded and the routine to exit.

Now a start bit arrives, let's see what happens. This time through we will move 0 into the
Carry bit. As rxCount is still zero, we will not jump to RX_Bit, but we will end up moving 9
into rxCount (via W). Now we load the rxTimer with 1.5 bit periods, decrement the timer for
this interrupt cycle and exit. On the next interrupt we will have 9 in rxCount so the code will
jump right to RX_Bit after sampling the serial line, and then the rxTimer will be decremented
again. This will continue until rxTimer is zero.

At this point we're actually in the middle of the first data bit (the LSB). We will reload the
rxTimer with the bit timing, and then decrement the rxCount to account for the start bit. The
program will drop through the SZ (skip if zero) instruction since rxCount is at eight, and then
move the data bit (currently sitting in Carry) into rxByte with the RR (rotate right) instruction.
Finally, the program will drop through another SZ instruction and jump out of the serial
routine to the Multiplexer.

This process will continue for eight bits. After the final bit arrives rxCount will be zero, and
the code will end up skipping the JMP Multiplex instruction and move to RX_Buffer. This

Column #117: Timing is Everything

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 7

code will save the incoming byte to a 16-byte circular buffer. This will let our foreground
program handle important business while bytes are streaming in. That said, it's a circular
buffer, and if we don't pull data from it before it fills, it can end up overwriting itself. That
won't be a problem with our display.

The code at RX_Buffer uses indirect addressing via the FSR (File Select Register) to update
the circular buffer. We start by moving the location of the first byte of the buffer into the
FSR, then adding the head pointer (rxHead) to that. The MOV IND instruction takes the
value of rxByte and puts it into the location being pointed to by the FSR. Then we update the
position of the head pointer and make sure that it stays within a 0 to 15 range by clearing bit
4. At the end of our serial section we can terminate the assembly code block of our ISR with
the ENDASM instruction.

Did you just take a big breath? I did. There will come a point when this all seems trivial, but
until you get to that point you might want to review it over a few times. It wouldn't hurt to
map the position of the counters and bits on paper so that you make sure you understand it.
By understanding how this works you'll be able to modify it to suit your needs for a different
application.

Column #117: Timing is Everything

Page 8 • The Nuts and Volts of BASIC Stamps (Volume 6)

Figure 117.2: SX28AC/DP with Multiplexed LEDs

Column #117: Timing is Everything

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 9

Taking the Mystery Out of Multiplexing

Remember that our project has another important task: we have to multiplex the LED display
which means selecting the active column (cathode) and then activating the appropriate
segments (anodes) to create the desired pattern. We will handle this "in the background" via
the ISR. This is actually much easier than the serial code though, and can be done with SX/B
instructions.

Multiplex:
 INC digPntr
 IF digPntr <= 7 THEN Next_Digit
 digPntr = 0

Next_Digit:
 Cathodes = NoDig
 IF digPntr > limit THEN ISR_Exit
 Anodes = anoBuf(digPntr)
 IF digBlank = 1 THEN ISR_Exit
 READ DigCtrl + digPntr, Cathodes

ISR_Exit:
 RETURNINT 104

The first step is to increment the variable called digPntr which points at the current active
column. The next line will compare the value of digPntr to seven (last legal column value),
and if it digPntr is less than or equal to seven then we will move on to Next_Digit. Once
digPntr hits eight we will reset it before moving on. If you modify the program for a smaller
display, be sure to update this section of code.

The code at Next_Digit actually updates the display. We start by turning it off – this will
prevent ghosting when we change the anode (segments) values. Next we're going to check a
couple of values that can be set by the user via serial commands (more on that later). The first
is the blanking bit, which turns the display off without affecting the contents of the display
buffer. When blanking is enabled we jump right out of the ISR before enabling the current
column. The next value checked is the column limit. This lets us decide who many columns
to activate (starting from the rightmost position). If the column pointer is beyond the column
limit we jump out of the ISR before activating the current column.

Finally, when blanking is off and the current column is active we will move the contents of
the anodes buffer for that column to the display. Then we activate the column by setting its
cathode control line to zero and we're done.

Column #117: Timing is Everything

Page 10 • The Nuts and Volts of BASIC Stamps (Volume 6)

Take another breath. The really cool thing about all this is that the multiplexing code was
written in BASIC – SX/B BASIC. That's really neat. Now, before you get too excited there
is something very important to keep in mind: You must keep the longest path through the ISR
to less than the number of cycles assigned to the ISR activation, minus 3 cycles (101 for this
project). If we go over, what will happen is that an interrupt cycle may get ignored if it occurs
while the current interrupt is still running (the SX disables interrupt while running the ISR),
and this could be catastrophic for programs that require specific interrupt timing. You can
check the length of the ISR by looking at the assembly output – using Ctrl-L in the SX-Key
Editor is a quick way to do this. In this program the final address of the ISR is $0056 (86), so
we're in good shape.

Back to Easy Street

With the interrupt routine coded and working the rest of the program is downright simple.
Let's go through the important parts. In the beginning, we want to wait for the proper header
string before processing any commands – this keeps us AppMod compatible. The header for
the LED controller is "!SS8" and will be followed by a command, and one or more data bytes.

Main:
 GOSUB Get_Byte, @cmd
 IF cmd <> "!" THEN Main
 GOSUB Get_Byte, @cmd
 IF cmd <> "S" THEN Main
 GOSUB Get_Byte, @cmd
 IF cmd <> "S" THEN Main
 GOSUB Get_Byte, @cmd
 IF cmd <> "8" THEN Main

This code looks very similar to what we did in the line follower program. It simply goes
through the input until the sequence "!SSR" is received. Remember that our serial input is
being placed into a circular buffer by the ISR, so we need to write a routine to retrieve the
first available byte.

_Get_Byte:
 IF rxTail = rxHead THEN _Get_Byte
 regAddr = __PARAM1
 temp1 = rxBuf(rxTail)
 INC rxTail
 rxTail = rxTail & $0F
 __RAM(regAddr) = temp1
 RETURN

Column #117: Timing is Everything

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 11

Just as we did last time, we can pass the desired variable address by using the "@" preface.

In the Get_Byte routine this causes the address of that byte to be saved. Then the routine
compares the value of the tail pointer (where we will get the byte) to the head pointer (where
the next incoming byte will be saved). If these values are equal, the buffer is empty and we'll
loop to the top of the routine until something arrives.

When the buffer isn't empty we will move the byte currently sitting in the tail position to a
temporary variable. As we did with the head pointer in the ISR, we have to update the
position of the tail pointer and force it to stay within the 0 to 15 range of valid buffer
addresses. Finally, we move the serial byte (sitting in temp1) to the variable specified by the
caller by using the system __RAM() address. This is new in SX/B version 1.1, and makes it
easy to modify or retrieve any SX RAM address.

Once we have the header we will grab the command byte and then jump to a routine that takes
care of any data or processing required by the command.

Get_Cmd:
 GOSUB Get_Byte, @cmd
 IF cmd = "R" THEN Do_Reset
 IF cmd = "C" THEN Do_Config
 IF cmd = "X" THEN Do_Blanking
 IF cmd = "W" THEN Do_Write
 IF cmd = "B" THEN Do_Block
 IF cmd = "<" THEN Do_ShiftL
 IF cmd = ">" THEN Do_ShiftR
 GOTO Main

To some this structure may look a bit clunky, but keep in mind that SX/B is designed to be
very close to assembly language. This lets the code compile very cleanly, and more
importantly, it lets us learn from the compiled code. In many instances you'll see that there is
a 1-to-1 relationship between SX/B instructions and SX instructions. SX/B is built for fancy
– it's built for speed.

Let's have a look at the valid instructions, starting with "R" for reset. The purpose of this
command is to clear the serial buffer, clear the display buffer, and set the display mode for
each column.

Do_Reset:
 GOSUB Get_Byte, @colMode
 rxHead = 0
 rxTail = 0

Column #117: Timing is Everything

Page 12 • The Nuts and Volts of BASIC Stamps (Volume 6)

 limit = 0
 colEnable = %11111111
 FOR idx = 0 TO 7
 digBuf(idx) = 0
 NEXT
 GOSUB Update_Anodes
 GOTO Main

Note that the reset command allows us to specify the column mode bits. Since our display is
eight digits wide, a single byte works perfectly. A "0" bit (default) indicates that the column
is decoded, that is, the value in the data buffer will be translated to the appropriate patterns for
the values 0 to F (15). A "1" bit in the mode byte will cause the raw bits value to be
transferred to the display. This feature allows us to define other alpha characters, and special
patterns that may be used in animations (the BS2 demo program shows off this feature).

The rest of the reset code clears the serial input buffer, sets the display limit to one column,
enables all columns (up to the column limit), and clears the display buffer (digBuf). After
these changes are made we have to call the Update_Anodes subroutine as the anodes buffer is
what gets transferred to the display in the ISR.

_Update_Anodes:
 FOR temp1 = 0 TO 7
 temp2 = 0
 temp3 = colEnable >> temp1
 IF temp3.0 = 0 THEN _Put_Dig
 temp2 = digBuf(temp1)
 temp3 = colMode >> temp1
 IF temp3.0 = 1 THEN _Put_Dig

_Decode_Dig:
 temp2 = temp2 & $0F
 READ SegMaps + temp2, temp2

_Put_Dig:
 anoBuf(temp1) = temp2
 NEXT
 RETURN

This subroutine probably looks a bit more complicated than it is. The code loops through
eight columns, first checking to see if a column is enabled. If it isn't, the anodes buffer for
that column is cleared. If the column is enabled, then we need to check the mode for that
column. When the mode bit is "0" we will take the low nibble of the column value and use it

Column #117: Timing is Everything

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 13

as an index into the patterns table that make up the shapes for the numbers 0 through F. If the
mode bit for a column is "1" the raw value is transferred to the anodes buffer.

After the display is reset, we may want to change the configuration. Let's say that we wanted
to enable the rightmost three columns in decoded mode. Here's how we could do that using a
BASIC Stamp:

 SEROUT Sout, Baud, ["!SS8C", 2, 0, $FF]

The first byte in the stream limits us to the third column (column 2), the next byte specifies
that all columns are decoded (all bits are 0), and that all visible columns are enabled. Let's
look at the code that processes the "C" (configuration) command:

Do_Config:
 GOSUB Get_Byte, @limit
 GOSUB Get_Byte, @colMode
 GOSUB Get_Byte, @colEnable
 limit = limit MAX 7
 GOSUB Update_Anodes
 GOTO Main

As you can see, there is no magic here – we simply grab the bytes coming in and move them
to their respective variables. The only byte of concern is the column limit which has a
maximum value of seven. The MAX operator handles this for us. Since the configuration
command can change column display modes and enable bits, we need to call Update_Anodes
again to refresh the anodes buffer.

Before we run out of space, let's actually put a value into the display, shall we? We're going
to use the "W" (write) command that will let us specify a column and a value to write to it.

Do_Write:
 GOSUB Get_Byte, @idx
 GOSUB Get_Byte, @cmd
 IF idx > 7 THEN Main
 digBuf(idx) = cmd
 GOSUB Update_Anodes
 GOTO Main

After retrieving the column and data values, we just need to make sure that a column value
beyond our display has not been specified. If this happens we exit to Main and leave the raw
digits buffer alone. If the column index is good, then we update the digits buffer, and as we
did before we update the anodes buffer as well – this updates the display.

Column #117: Timing is Everything

Page 14 • The Nuts and Volts of BASIC Stamps (Volume 6)

Before we go, let's look a bit of PBASIC code that can run the project – it will make sense of
some of the main features.

 idx2 = 0
 FOR cntr = 1 TO 100
 FOR idx = 0 TO 2
 SEROUT Sout, Baud, ["!SS8W", idx, cntr DIG idx]
 NEXT
 SEROUT Sout, Baud, ["!SS8W", 7, 1 << idx2]
 idx2 = idx2 + 1 // 6
 LOOKDOWN cntr, <[10, 100, 1000], last
 LOOKUP last, [$FE, $FC, $F8], cMode
 LOOKUP last, [$C1, $C3, $C7], cEnable
 SEROUT Sout, Baud, ["!SS8C", 7, cMode, cEnable]
 PAUSE 100
 NEXT

The purpose of this code is to display a 3-digit counter in the display, as well as run a little
animated "bug" on the left. The main loop handles the counter. At the top of the main loop is
a smaller inner loop that uses the Write command to send the counter digits to the display.
Notice how convenient the DIG operator is for us in this application. The next section
animates the outside segments of the left-most display. It's a very simple attention getter.

Now that we have data in the SS8 buffer, we need to configure the display so that digits are
shown on the right, and the animated "bug" on the left. With LOOKDOWN we can
determine how many columns the current count value occupies, and with that value LOOKUP
will give us the proper column mode and enable bytes. This lets us blank leading zeros and
create a more professional looking display.

One of the things that you probably noticed is that the column mode and column enable bytes
can – in some cases – be used to accomplish the same thing. To be honest, the column enable
feature was a late addition to the project, and this came after a lot of display experimenting.
One technique I experimented with while developing the code was pre-writing to the display,
then revealing the display column by column by updating the column enable byte.

Well, it's up to you now. I will admit that programming the SX – even with SX/B – can be
challenging, but the rewards are really worthwhile. Using this display project as a guide, you
can build any number of serial accessories that required buffered input. Be sure to download
the SX documentation from Ubicom and do checkout the books I told you about; they will
make your journey into SX mastery far easier.

By the way, Happy New Year! And until next time ... Happy Stamping.

Column #117: Timing is Everything

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 15

' ===
'
' File...... SS8_Test.BS2
' Purpose... Demonstrates SS8 Terminal module
' Author.... Jon Williams -- Parallax, Inc.
' E-mail.... jwilliams@parallax.com
' Started... 11 NOV 2004
' Updated... 15 NOV 2004
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
'
' Test program for the SS8 LED terminal.

' -----[Revision History]--

' -----[I/O Definitions]---

Sout PIN 15

' -----[Constants]---

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T1200 CON 813
 T2400 CON 396
 T4800 CON 188
 T9600 CON 84
 T19K2 CON 32
 TMidi CON 12
 T38K4 CON 6
 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T4800 CON 500
 T9600 CON 240
 T19K2 CON 110
 TMidi CON 60
 T38K4 CON 45
#ENDSELECT

Inverted CON $4000
Open CON $8000

Column #117: Timing is Everything

Page 16 • The Nuts and Volts of BASIC Stamps (Volume 6)

Baud CON Open + T9600 ' AppMod compatible

DispOn CON 0 ' display blanking control
DispOff CON 1

' ******************
' 7-Segment Patterns
' ******************

_Spc CON %00000000
_DQuote CON %00100010
_SQuoteL CON %00000010
_SQuoteR CON %00100000
_Dash CON %01000000
_DP CON %10000000
_Fslash CON %01010010

_0 CON %00111111
_1 CON %00000110
_2 CON %01011011
_3 CON %01001111
_4 CON %01100110
_5 CON %01101101
_6 CON %01111101
_7 CON %00000111
_8 CON %01111111
_9 CON %01100111

_Equ CON %01000001
_Qmark CON %00000000

_A CON %01110111
_C CON %00111001
_E CON %01111001
_F CON %01110001
_H CON %01110110
_I CON %00000110
_J CON %00011110
_L CON %00111000
_O CON %00111111
_P CON %01110011
_S CON %01101101
_U CON %00111110

_BrktL CON %00111001
_Bslash CON %01100100
_BrktR CON %00001111
_Uline CON %00001000

_b CON %01111100

Column #117: Timing is Everything

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 17

_c2 CON %01011000
_d CON %01011110
_h2 CON %00000000
_i2 CON %00000000
_n CON %01010100
_o2 CON %00000000
_r CON %01010000
_t CON %01111000
_u2 CON %00000000

_DegSym CON %01100011

' -----[Variables]---

cntr VAR Byte
last VAR Byte
cMode VAR Byte
cEnable VAR Byte
idx VAR Nib
idx2 VAR Nib
char VAR Byte

' -----[EEPROM Data]---

' -----[Initialization]--

Reset:
 SEROUT Sout, Baud, ["!SS8R", $FF] ' clear bufs, segment mode
 PAUSE 1

' -----[Program Code]--

Main:
 GOSUB Show_Start

 ' chaser underline

 FOR idx = 1 TO 5
 FOR idx2 = 2 TO 0
 SEROUT Sout, Baud, ["!SS8W", idx2, _Uline]
 PAUSE 100
 SEROUT Sout, Baud, ["!SS8W", idx2, 0]
 NEXT
 PAUSE 200
 NEXT

Column #117: Timing is Everything

Page 18 • The Nuts and Volts of BASIC Stamps (Volume 6)

 ' reset, prep for counter and animation display

 SEROUT Sout, Baud, ["!SS8R", $FF] ' clear buffers
 PAUSE 1
 SEROUT Sout, Baud, ["!SS8C", 0, 0, 0] ' disable all columns

 ' display counter and animated "bugs"

 idx2 = 0
 FOR cntr = 1 TO 100
 FOR idx = 0 TO 2
 SEROUT Sout, Baud, ["!SS8W", idx, cntr DIG idx]
 NEXT
 SEROUT Sout, Baud, ["!SS8W", 7, 1 << idx2] ' animated bug
 SEROUT Sout, Baud, ["!SS8W", 6, 1 << (idx2 + 3 // 6)]
 idx2 = idx2 + 1 // 6
 LOOKDOWN cntr, <[10, 100, 1000], last ' get last digit column
 LOOKUP last, [$FE, $FC, $F8], cMode ' get column mode
 LOOKUP last, [$C1, $C3, $C7], cEnable ' get enable bits
 SEROUT Sout, Baud, ["!SS8C", 7, cMode, cEnable]
 PAUSE 100
 NEXT
 SEROUT Sout, Baud, ["!SS8C", 7, $F8, $07]
 PAUSE 500

 GOSUB Show_End
 PAUSE 1000

 ' shift display left and right

 FOR idx = 1 TO 5
 SEROUT Sout, Baud, ["!SS8<", 1]
 PAUSE 100
 NEXT
 FOR idx = 1 TO 5
 SEROUT Sout, Baud, ["!SS8>", 1]
 PAUSE 100
 NEXT

 ' flash display using blanking bit

 FOR idx = 1 TO 5
 SEROUT Sout, Baud, ["!SS8X", DispOff]
 PAUSE 250
 SEROUT Sout, Baud, ["!SS8X", DispOn]
 PAUSE 250
 NEXT

 GOTO Main
 END

Column #117: Timing is Everything

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 19

' -----[Subroutines]---

' Write "StArt" on LED display

Show_Start:
 SEROUT Sout, Baud, ["!SS8X", DispOff]
 SEROUT Sout, Baud, ["!SS8C", 7, $FF, $FF]
 SEROUT Sout, Baud, ["!SS8B", 8, 0, 0, 0, _t, _r, _A, _t, _S]
 SEROUT Sout, Baud, ["!SS8X", DispOn]
 RETURN

' Write "End" on LED display

Show_End:
 SEROUT Sout, Baud, ["!SS8X", DispOff]
 SEROUT Sout, Baud, ["!SS8C", 7, $FF, $FF]
 SEROUT Sout, Baud, ["!SS8B", 8, _d, _n, _E, 0, 0, 0, 0, 0]
 SEROUT Sout, Baud, ["!SS8X", DispOn]
 RETURN

Column #117: Timing is Everything

Page 20 • The Nuts and Volts of BASIC Stamps (Volume 6)

' ===
'
' File...... SS8_TERM.SXB
' Purpose... Eight character, 7-Segment Serial Display
' Author.... Jon Williams
' (c) Parallax, Inc. -- All Rights Reserved
' E-mail.... jwilliams@parallax.com
' Started... 11 NOV 2004
' Updated... 15 NOV 2004
'
' ===

' ---
' Program Description
' ---
'
' Serial "terminal" that controls up to eight, 7-segment LED displays,
' 64 discrete LEDs, or a mixture of both.
'
' Commands to the SS8 are electrically and syntactically compatible with
' the Parallax AppMod protocol, albeit at 9600 baud (open, true).
'
' Valid serial commands from host:
'
' "!SS8R" -- reset SS8, set column mode
' "!SS8C" -- configure last column, column modes, column enable
' "!SS8X" -- display blanking control
' "!SS8W" -- write to specific digit
' "!SS8B" -- write block block to display
' "!SS8<" -- shift display left n places
' "!SS8>" -- shift display right n places
'
' The SS8 does not send data back to the host.

' ---
' Device Settings
' ---

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX
FREQ 4_000_000

' ---
' IO Pins
' ---

Sin VAR RA.0 ' serial in
Cathodes VAR RB ' LED cathodes
TRIS_Cath VAR TRIS_B

Column #117: Timing is Everything

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 21

Anodes VAR RC ' LED anodes
TRIS_Ano VAR TRIS_C

' ---
' Constants
' ---

B2400 CON 16 ' 2400 Baud
B9600 CON 4 ' 9600 Baud
BitTm CON B9600 ' samples per bit
BitTm15 CON 3*BitTm/2 ' 1.5 bits (SASM constant)

DigTm CON 77 ' 77 x 26 us = 2 ms

Blank CON %00000000 ' all segments off
NoDig CON %11111111 ' all digits off

' ---
' Variables
' ---

rxCount VAR Byte ' bits to receive
rxTimer VAR Byte ' bit timer for ISR
rxByte VAR Byte ' serial byte
rxHead VAR Byte ' available slot
rxTail VAR Byte ' next byte to read
rxBuf VAR Byte(16) ' circular buffer

flags VAR Byte

cmd VAR Byte ' command byte from host
limit VAR Byte ' last dig displayed
colMode VAR Byte ' column mode (0 = decoded)
colEnable VAR Byte ' column enable (1 = enabled)
idx VAR Byte ' loop counter

digTimer VAR Byte ' digit timer for ISR
digPntr VAR Byte ' digit pointer
digBlank VAR flags.0 ' blank if bit0 = 1
digBuf VAR Byte(8) ' digit buffer (raw)
anoBuf VAR Byte(8) ' anodes buffer

regAddr VAR Byte ' register address
temp1 VAR Byte ' parameter(s)
temp2 VAR Byte
temp3 VAR Byte
temp4 VAR Byte

Column #117: Timing is Everything

Page 22 • The Nuts and Volts of BASIC Stamps (Volume 6)

' ---
 INTERRUPT
' ---

' ISR is setup to receive N81, true mode.

ISR_Start:
 ASM
 BANK $00
 MOVB C, Sin ' sample serial input
 TEST rxCount ' receiving now?
 JNZ RX_Bit ' yes if rxCount > 0
 MOV W, #9 ' start + 8 bits
 SC ' skip if no start bit
 MOV rxCount, W ' got start, load bit count
 MOV rxTimer, #BitTm15 ' delay 1.5 bits

RX_Bit:
 DJNZ rxTimer, Multiplex ' update bit timer
 MOV rxTimer, #BitTm ' reload bit timer
 DEC rxCount ' mark bit done
 SZ ' if last bit, we're done
 RR rxByte ' move bit into rxByte
 SZ ' if not 0, get more bits
 JMP Multiplex

RX_Buffer:
 MOV FSR, #rxBuf ' get buffer address
 ADD FSR, rxHead ' point to head
 MOV IND, rxByte ' move rxByte to head
 BANK $00
 INC rxHead ' update head
 CLRB rxHead.4 ' keep 0 - 15
 ENDASM

Multiplex:
 INC digPntr ' point to next digit
 IF digPntr <= 7 THEN Next_Digit ' still in column range?
 digPntr = 0 ' no, reset to first column

Next_Digit:
 Cathodes = NoDig ' deactive all
 IF digBlank = 1 THEN ISR_Exit ' terminate if blanking on
 IF digPntr > limit THEN ISR_Exit ' no more active digits
 Anodes = anoBuf(digPntr) ' update anodes
 READ DigCtrl + digPntr, Cathodes ' enable current digit

ISR_Exit:
 RETURNINT 104 ' 26 uS @ 4 MHz

Column #117: Timing is Everything

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 23

' ===
 PROGRAM Start
' ===

SegMaps: ' segments maps
' .gfedcba
 DATA %00111111 ' 0
 DATA %00000110 ' 1
 DATA %01011011 ' 2
 DATA %01001111 ' 3
 DATA %01100110 ' 4
 DATA %01101101 ' 5
 DATA %01111101 ' 6
 DATA %00000111 ' 7
 DATA %01111111 ' 8
 DATA %01100111 ' 9
 DATA %01110111 ' A
 DATA %01111100 ' b
 DATA %00111001 ' C
 DATA %01011110 ' d
 DATA %01111001 ' E
 DATA %01110001 ' F

DigCtrl:
 DATA %11111110 ' column 0 on
 DATA %11111101
 DATA %11111011
 DATA %11110111
 DATA %11101111
 DATA %11011111
 DATA %10111111
 DATA %01111111 ' column 7 on

' ---
' Subroutines Jump Table
' ---

' This routine transfers the input buffer (digBuf) to the anodes
' buffer (anoBuf), checking the status of the cfg bit to determine
' whether the anoBuf gets raw data (cfg bit = 1) or dec/hex decoded
' (cfg bit = 0) 7-segment pattern.

Update_Anodes:
 GOTO @_Update_Anodes

' Use: GOSUB Get_Byte, @aVar
' -- if data is in buffer, the next byte is moved to 'aVar'
' -- will wait for byte to arrive if buffer is empty

Column #117: Timing is Everything

Page 24 • The Nuts and Volts of BASIC Stamps (Volume 6)

Get_Byte:
 GOTO @_Get_Byte

' ---
' Program Code
' ---

Start:
 PLP_A = %0001 ' pull-up unused pins
 Anodes = Blank ' clear display
 TRIS_Ano = %00000000 ' make outputs
 Cathodes = %11111111 ' all off to start
 TRIS_Cath = %00000000 ' make outputs
 GOSUB Update_Anodes ' prep display buffer
 OPTION = %10001000 ' interrupt, no prescaler

Main: ' wait for header ("!SS8")
 GOSUB Get_Byte, @cmd
 IF cmd <> "!" THEN Main
 GOSUB Get_Byte, @cmd
 IF cmd <> "S" THEN Main
 GOSUB Get_Byte, @cmd
 IF cmd <> "S" THEN Main
 GOSUB Get_Byte, @cmd
 IF cmd <> "8" THEN Main

Get_Cmd:
 GOSUB Get_Byte, @cmd ' get command
 IF cmd = "R" THEN Do_Reset
 IF cmd = "C" THEN Do_Config
 IF cmd = "X" THEN Do_Blanking
 IF cmd = "W" THEN Do_Write
 IF cmd = "B" THEN Do_Block
 IF cmd = "<" THEN Do_ShiftL
 IF cmd = ">" THEN Do_ShiftR
 GOTO Main ' command byte was invalid

Do_Reset: ' reset display
 GOSUB Get_Byte, @colMode ' get column mode bits
 rxHead = 0 ' clear serial buffer
 rxTail = 0
 limit = 0 ' view col 0 only
 colEnable = %11111111 ' enable all columns
 FOR idx = 0 TO 7 ' reset input buffer
 digBuf(idx) = 0
 NEXT
 GOSUB Update_Anodes ' update display

Column #117: Timing is Everything

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 25

 GOTO Main

Do_Config:
 GOSUB Get_Byte, @limit ' get limit, 0 - 7
 GOSUB Get_Byte, @colMode ' get column mode bits
 GOSUB Get_Byte, @colEnable ' get column enable bits
 limit = limit MAX 7 ' keep limit legal
 GOSUB Update_Anodes ' update display
 GOTO Main

Do_Blanking:
 GOSUB Get_Byte, @cmd
 digBlank = cmd.0 ' save blanking bit
 GOTO Main

Do_Write: ' write to a register
 GOSUB Get_Byte, @idx ' get register index
 GOSUB Get_Byte, @cmd ' get value for register
 IF idx > 7 THEN Main ' abort if out of range
 digBuf(idx) = cmd ' otherwise, update
 GOSUB Update_Anodes ' update display
 GOTO Main

Do_Block: ' block write all regs
 GOSUB Get_Byte, @temp4 ' get block size
 IF temp4 = 0 THEN Main ' prevent illegal block
 IF temp4 > 8 THEN Main
 DEC temp4 ' adjust for loop
 FOR idx = 0 TO temp4 ' loop through block
 GOSUB Get_Byte, @cmd ' get new value
 digBuf(idx) = cmd ' move to register
 NEXT
 GOSUB Update_Anodes ' update display
 GOTO Main

Do_ShiftL: ' shift digit buffer left
 GOSUB Get_Byte, @temp4 ' get block size
 IF temp4 = 0 THEN Main ' no shift
 IF temp4 > 8 THEN Main ' too many bytes
 FOR idx = 1 TO temp4 ' shift buffer
 FOR temp1 = 7 TO 1 STEP - 1
 temp2 = temp1 - 1
 digBuf(temp1) = digBuf(temp2) ' digBuf(n) = digBuf(n-1)
 NEXT
 digBuf(0) = 0 ' clear end of buffer
 NEXT

Column #117: Timing is Everything

Page 26 • The Nuts and Volts of BASIC Stamps (Volume 6)

 GOSUB Update_Anodes ' update display
 GOTO Main

Do_ShiftR: ' shift digit buffer right
 GOSUB Get_Byte, @temp4 ' get block size
 IF temp4 = 0 THEN Main ' no shift
 IF temp4 > 8 THEN Main ' too many bytes
 FOR idx = 1 TO temp4 ' shift buffer
 FOR temp1 = 0 TO 6
 temp2 = temp1 + 1
 digBuf(temp1) = digBuf(temp2) ' digBuf(n) = digBuf(n+1)
 NEXT
 digBuf(7) = 0 ' clear end of buffer
 NEXT
 GOSUB Update_Anodes ' update display
 GOTO Main

' ---
' Page 1 Code
' ---

Page_1:
 ADDRESS $200

' This routine transfers the input buffer (digBuf) to the anodes
' buffer (anoBuf), checking the status of the cfg bit to determine
' whether the anoBuf gets raw data (cfg bit = 1) or dec/hex decoded
' (cfg bit = 0) 7-segment pattern.

_Update_Anodes:
 FOR temp1 = 0 TO 7 ' update all digits
 temp2 = 0 ' start with blank
 temp3 = colEnable >> temp1 ' align enable for test
 IF temp3.0 = 0 THEN _Put_Dig ' test enable bit
 temp2 = digBuf(temp1) ' get raw value
 temp3 = colMode >> temp1 ' align mode for test
 IF temp3.0 = 1 THEN _Put_Dig ' test col mode bit

_Decode_Dig:
 temp2 = temp2 & $0F ' mask out high nib
 READ SegMaps + temp2, temp2 ' get dec/hex map

_Put_Dig:
 anoBuf(temp1) = temp2 ' anode --> buffer
 NEXT
 RETURN

Column #117: Timing is Everything

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 27

' Use: GOSUB Get_Byte, @aVar
' -- if data is in buffer, the next byte is moved to 'aVar'
' -- will wait for byte to arrive if buffer is empty

_Get_Byte:
 regAddr = __PARAM1 ' save return address
 IF rxTail = rxHead THEN _Get_Byte ' wait for byte
 temp1 = rxBuf(rxTail) ' get first available
 INC rxTail ' point to next
 rxTail = rxTail & $0F ' keep 0 - 15
 __RAM(regAddr) = temp1 ' move to target address
 RETURN

