Column #137: SX/B Turns Sweet 16

The Nuts & Volts of BASIC Stamps

Parallax, Inc. Nuts & Volts
www.parallax.com www.nutsvolts.com

Column #137, September 2006 by Jon Williams:

SX/B Turns Sweet 16

There are those — the pessimists among us — that will insist that you can't get anything
worthwhile for nothing; everything has a price. Not so with SX/B. While it may not complete
with big, “ professional” compilers, in the right hands (i.e., yours) and with a few tricks, SX/B
is quite capable and costs absolutely zero dollars. And with the cost of the SX-Key
programming tool and SX Proto Boards so low these days, it's really hard to ignore the SX
micro as a viable solution to many design problems. .

Truth be told, it’s easy for me to be a fan of SX/B because 1 was part of the team that
developed it. Still, those of you who know me understand that I’'m a very practical guy; I
don’t have a lot of time to fool around and when I need something, I need it, and I need it to
work. Since leaving Parallax for new adventures I have in fact continued to use SX/B — |
recently designed a camera controller using an SX28 that was programmed entirely in SX/B
1.5x (no assembly language required). My point is that SX/B wasn’t developed simply for the
sake of doing it; SX/B was developed to provide a practical, no-cost tool for SX developers.

If you’ve never tried the SX, perhaps this article will encourage you to do so. It really is hard
to beat the cost of entry: the SX-Key (ICP programming tool with full debugging capability)
is only $79, the SX-Blitz (programming only, great for students) is an incredible bargain at
only $29, and the fully-populated (power supply, SX chip, connectors) SX48 Proto Board is
only $10! Yes, ten bucks. Using the Blitz, the SX48 Proto Board, a serial cable and a 12
VDC power supply, you could get into SX programming for about $50 — that’s really not a
bad deal for all the horsepower delivered by the SX.

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

SX/B 1.5x

The big news with version 1.5x is, of course, the addition of Word (16-bit) variables. This is
especially good news for BS2 users wanting to port prototype projects to the SX for high-
volume production. As in PBASIC, we declare a 16-bit variable in SX/B as type Word:

tmpW1l VAR Word

When we look “under the hood” of SX/B (use Ctrl+L to compile and view the listing) we’ll
see that the definition above is actually composed of two bytes:

tmpW1l EQU 0x0D
tmpWl LSB EQU tmpWl
tmpWl MSB EQU tmpW1+1

Note that the value is stored “Little Endian” (low byte first) and that in addition to the name
we declare, the compiler creates definitions with the suffixes LSB and MSB; these byte
variables can be used just as we would use the tmpW1.LOWBTYE and tmpW1.HIGHBYTE
notation in PBASIC.

Word variables can be used exactly as we’d expect — and even in a few ways that we might
not consider at the start. The only caveat is this: due to the limit of internal variables used by
SX/B operations we cannot multiply a word variable by itself and return the result to that
same variable. The following line of code will generate a compiler error:

tmpWl = tmpWl * tmpWl

We can use the other operators here (+, -, /), just not operators that involve multiplication (
* %/, and *¥*).

Most of the SX/B instructions have been upgraded to work with Word variables, and a new
variant of the DATA directive, called WDATA lets us store Word values for use with READ.
The use of 16-bit values extends to I/O ports as well. In SX/B 1.5x there are three 16-bit
pseudo ports: RBC, RCD, and RDE; the last two only apply to the SX45/52.

Here’s a simple demo that shows how we can use the RBC port on an SX28:

Start:
TRIS B = %00000000
TRIS C = %00000000

RBC = %$00000000_00000001

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

Main:
DO
DELAY 75
RBC = RBC << 1
LOOP UNTIL RBC = %10000000_00000000
DO
DELAY 75
RBC = RBC >> 1
LOOP UNTIL RBC = %00000000_00000001
GOTO Main

The program starts by making the RB and RC ports outputs — we have to do it this way
because there is no TRIS RBC port. The RBC port gets initialized and the falls into a loop
that simply ping-pongs the lit LED back and forth. Note the use of the underscore character
in the comparison statement to make visualization of the 16-bit value easier.

Since this program uses a subroutine called DELAY, and we might want to do delays with 16-
bit values, let’s look at the construction of subroutines in SX/B 1.5x.

For DELAY, we’ll use the following declaration:
DELAY SUB 1, 2

This will let us pass a 1- or 2-byte value to DELAY. Here’s the actual subroutine code:

' Use: DELAY ms

' -- 'ms' is delay in milliseconds, 0 - 65535
DELAY :
IF _ PARAMCNT = 1 THEN
tmpWl = _ PARAM1
ELSE
tmpWl = _ WPARAMI2
ENDIF
PAUSE tmpWl
RETURN

The construct of this subroutine useful in many other situations as it allows us to pass bytes or
words to the same subroutine. When we pass a byte, PARAMCNT (internal variable) will
be set to one by the compiler and the parameter is passed in _ PARAMI1. When we pass a
word, PARAMCNT will be set to two and the value passed in _ WPARAMI12. Of course,
we’ll use a word-sized variable in the subroutine so that we can handle anything passed to it.

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

Functional Subroutines

With the addition of 16-bit variables a mechanism needed to be developed that would enable
Word values to be returned from a subroutine; this is accomplished with the FUNC definition.
This lets us define a function that can return up to four bytes (two words).

FUNC differs from SUB in that we will first specify how many bytes are to be returned, then
the minimum and maximum parameter count used by the subroutine code for the function.
Let’s say that we wanted function that would return a 32-bit product from two numbers — can
we do it? Yes. Of course, we don’t have 32-bit values in SX/B so we have to handle the
words separately. Let’s start with the function definition:

MULT32 FUNC 4, 2, 4

This definition says that the function, MULT32, will return four bytes, and that the caller
must pass between two and four bytes to it. This means that we could return the product of
two bytes, a word and a byte, or two words. Note that the second option, multiply a word and
a byte, can create some trickery for our subroutine construction so we must make a decision
about the order that values are passed. Let’s decide that we will pass the word value first,
then the byte. Here’s the code for that function:

MULT32:

IF _ PARAMCNT = 2 THEN
tmpWl = PARAM1
tmpW2 = PARAM2

ENDIF

IF _ PARAMCNT = 3 THEN
tmpWl = WPARAMI2
tmpW2 = PARAM3

ENDIF

IF _ PARAMCNT = 4 THEN
tmpWl = WPARAMI2
tmpW2 = WPARAM34

ENDIF

tmpW3 = tmpWl ** tmpW2

tmpW2 = tmpWl * tmpW2

RETURN tmpW2, tmpW3

As with the DELAY routine we did earlier, this code uses the PARAMCNT variable to
determine what is being passed and how to collect the parameters from the caller. The second
choice, when _ PARAMCNT is three, assumed that the first value passed is the word and the
second is the byte. With the parameters collected the rest is easy; the ** operator (new in
SX/B 1.5x, and */ has been added as well) returns the upper 16 bits from a 16-bit x 16-bit
multiplication. The * operator will return the lower 16-bits of the product.

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

Note how the 32-bit value is returned to the caller as two words, separated by a comma, low-
word first. So how do we collect this 32-bit value? Let’s start with variables to hold it:

result VAR Word
resultHi VAR Word

And here’s how we can use the function in a program:

result = MULT32 $FFFF, $0100
resultHi = _ PARAM3, _ DPARAM4
BREAK

The first part is obvious, I’m sure; we call the function and assign it to result. But this only
gets us the lower 16-bits. To get the upper 16-bits we have to grab them ourselves. The high
word from the function will be returned in _ PARAM3 (LSB) and PARAM4 (MSB). This
also demonstrates how to move two bytes into a word with just one line of code.

There is a method for collecting all four bytes from this function without the second line of
code above — but we must use an array as the target variable. So, we could do this:

bigval VAR Byte (4)
result VAR bigval (0)
resultHi VAR bigval (2)

And now we just need one line of code:

bigVal = MULT32 $1234, $10

One of the interesting things about the SX-Key tool is that it will let us view 32-bit values in
the Debug window. We can setup a WATCH declaration like this:

WATCH result, 32, UHEX

If we run the program in Debug mode with a BREAK instruction after the function call we’ll
see the 32-bit result.

PIN Down Your 1/0O

One of the latest updates to SX/B is the PIN definition that became available in version 1.51.
In the past we might define an I/O pin like this:

Led VAR RC.0

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

Now we can do this:

Led PIN RC.0 OUTPUT

What’s the advantage? Well, the compiler will automatically insert startup code that makes
the pin an output, so we don’t have to worry about anything beyond the declaration. That way
we can write directly to the pin knowing that the appropriate TRIS register has been setup
correctly.

In a lot of my older programs I would enable the SX pull-ups on any unused pin to minimize
current draw. It’s even easier now. Let’s say that we have just the one LED as above. By
using the following declarations we don’t have to worry about TRIS or PLP register settings
in our code, which lets us focus solely on the application. Note how PIN works with groups
and individual I/O pins.

UnusedA PIN RA INPUT PULLUP

UnusedB PIN RB INPUT PULLUP

UnusedC PIN RC INPUT PULLUP

Led PIN RC.0 OUTPUT NOPULLUP

The final declaration overrides the definition for RC.0 from the group above; this way we can
define the unused pins as a group instead of one at a time.

It’s important to understand that generation of PIN start-up code is enabled even when the
NOSTARTUP option for the PROGRAM directive is specified. The available options for
PIN are INPUT, OUTPUT, PULLUP, NOPULLUP, TTL, CMOS, and SCHMITT - and
when multiple options are used they are space-delimited.

Interrupts Without Irritation

Before I get too far into this section, let me start by saying that interrupts are always tricky but
that SX/B 1.5x does make them a bit easier to cope with. With SX/B 1.5x we can simply
specify how frequently (in interrupts per second) that the ISR should run and the compiler
will take care of the rest, setting the OPTION register and the RETURNINT value
automatically.

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

Let’s start with a very simple example:

ISR_Start:
INC timer
IF timer = Cycles THEN
TOGGLE Led
timer = 0
ENDIF
RETURNINT

The purpose of this code is to toggle the state of an LED every N milliseconds, defined by the
program constant called Cycles. Note that the end of the INTERRUPT declaration line
specifies 1000 — this will cause the program to setup the interrupt such that it runs once every
millisecond. If we specify an ISR rate that that won’t work with the FREQ directive the
compiler will complain of an invalid parameter.

This is interesting, but we may not want to blink the LED with a 50% duty cycle. Here’s an
easy update that allows us to specify the on- and off-time for the LED.

ISR Start:
INC timer
IF Led = IsOn THEN
IF timer = OnTime THEN
Led = IsOff
timer = 0
ENDIF
ELSE
IF timer = OffTime THEN
Led = IsOn
timer = 0
ENDIF
ENDIF
RETURNINT

You’ve probably noticed that these programs use the NOPRESERVE option in the
INTERRUPT declaration and may be wondering why and when to use this option. The
reason why is that it will reduce the amount of code in the ISR. When can we use this option?
We can use NOPRESERVE when none of the SX/B internal variables are being used in the

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

ISR. This can be determined by using Ctrl+L to compile the program and show the assembly
listing; if none of the internal variables (_ PARAMI1 — PARAM4) are being used then
NOPRESERVE can and should be used.

Before we wrap up this section let’s take the second version of the LED blinker and use it to
drive a motor. Remember the L293D that we used in the stepper project last month? Well,
it’s a push-pull driver so we can use two of its channels to drive a small DC motor and have
control over speed and direction with just two I/O pins.

VSJ VS-|-
IN1 ouT1
RAOD [L\
IN2 ouT2
RA1 [{:
EN1
L293D

ENZ

IN3 E ouT3
INd E ouT4

GND

Figure 137.1: DC Motor with L239D
One pin will be pulse-width modulated by the ISR to provide speed control. The other pin

will determine the direction that the motor spins. We could add control of the L293D enable
pin as well, but this program assumes that it is tied high.

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

Let’s look at the ISR first:

ISR_Start:
INC phase
IF phase > 100 THEN
phase = 0
IF mlSpeed > 0 THEN
M1Ctrl = IsOn
ENDIF
ELSE
IF phase > mlSpeed THEN
M1Ctrl = IsOff
ENDIF
ENDIF
RETURNINT

Looks pretty simple, doesn’t it? In fact, it is. The code starts by incrementing a variable
called phase — this tracks where we are, 0 to 100%, in the PWM cycle for the motor. When
that value exceeds 100 we reset everything by clearing the phase counter and turning the
motor control output on (if the speed is not set to zero). During the rest of the cycle we
compare the phase value to the speed of the motor; as soon as phase exceeds the motor speed
the motor is shut off. The behavior of this code lets us specify the motor speed in percentage.

The ISR runs the motor, but we need a subroutine to set the speed and direction when we need
a change.

SET MOTOR:
tmpBl = _ PARAM1
tmpB2 = _ PARAM2

mlSpeed = tmpBl MAX 100

IF tmpB2 = Fwd THEN
M1Dir = Fwd

ELSE
mlSpeed = 100 - mlSpeed
M1Dir = Rev

ENDIF

RETURN

This code, too, is very straightforward. After collecting the parameters the speed is set,
limiting its value to 100. Then the direction pin (second motor control output) is set. Here’s
where we need to make an adjustment when reverse direction is specified. The ISR always
makes the motor control pin high during the “on” phase of the motor. This is fine when the

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

direction is set to forward and the direction pin is low, but when the direction pin is high (for
reverse) what was the “on” time of the motor actually becomes the “off” time. Don’t worry,
the solution is simple: all we have to do is “invert” the reverse speed value by subtracting it
from 100.

From my point of view, motor PWM control is a bit of black art. Luckily, the code is really
easy to update. I found that setting my ISR rate to 10,000 (which works out to a 100 Hz
PWM frequency) worked best for the motor I was using. If this setting was too high the
motor wouldn’t move at low speeds; if it was too low the movement was very choppy at low
speeds. You may need to experiment with your motor.

Finally, we must remember that when the ISR is enabled as in the previous examples, it
“steals” time from the rest of our program and will affect time-sensitive instructions like
PAUSE and PAUSEUS (they get longer), and SERIN and SEROUT may not work at all.
Advanced programmers will appreciate the Effective-Hertz parameter of the FREQ directive
in SX/B 1.5x. If the ISR code runs a fixed period then we can determine the “effective” clock
frequency when the ISR is active and allow the compiler to generate code that will operate as
expected.

SX/B with Style

In the SX/B 1.5x help file you’ll find a section called “The Elements of SX/B Style.” This
was, of course, adapted from “The Elements of PBASIC Style” that appears on the Parallax
web site and in the PBASIC help file.

The key to success with SX/B, I believe, is using subroutines and functions properly. If you
do this, for example:

SERIN charl
SERIN char2
SERIN char3

You’ll chew up a whole bunch of code space as each SERIN instruction is expanded to the
assembly code required for that function — there is no automatic optimization by the compiler.
Optimization, then, is the responsibility of the programmer, and the easiest way to do it is put
“big” instructions into subroutines and functions.

What’s a “big” instruction? — it is any instruction that expands to more than a few lines of

assembly code; most of the instructions that have any sort of timing element will fall into this
category, things like SEROUT, SERIN, PAUSE, etc.

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

One final note on SUB and FUNC declarations: when the subroutine code does not require
any parameters, use 0 in the declaration — like this:

RX BYTE FUNC 1, 0

This will save a bit of generated code — just a bit — but every little bit counts with small
micros, right?

SX/B 1.5x has couple more tricks up its sleeve you’ll like: COUNT and COMPARE
instructions (ala BS2), TIMERI/TIMER2 instructions that simplify the use the SX48/52
multi-purpose timers, and an option I particularly like is the clock speed multiplier for
SHIFTIN and SHIFTOUT; this lets the us connect to synchronous devices at (or very near)
their maximum clock speed.

It’s your turn now; if you’re already using SX/B make sure you download the latest version
(it’s free!), and if you’re not using the SX, why not? When one considers the cost of entry, a
free compiler like SX/B, and the horsepower the chip can deliver... in my book it’s a great
value and should be part of your arsenal. Give it a try — you’ll be glad you did.

Until next time, Happy Stamping — SX/B style!

Resour ces:

Jon Williams
jwilliams@efx-tek.com

Updated... 05 JUL 2006

Project Code:

' P E Pt P Pt F P E E F F E F E F P T
T

' File...... FUNC. SXB

! Purpose... Demonstrates returning four bytes from a function

! Author.... (c) Parallax, Inc. -- All Rights Reserved

! E-mail.... support@parallax.com

! Started. ..

1

1

| @ ——————————————

' Program Description

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

' Demonstrates the use of a function and a method for collecting all
' returned bytes when simple (non-array) variables are used.

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000 _000

ID "FUNC"
L
' Variables
L
result VAR Word ' 32-bit result

resultHi VAR Word

bigval VAR Byte (4) ' 32-bit array

tmpwWl VAR Word ' subroutine work vars

tmpW2 VAR Word

tmpW3 VAR Word

WATCH result, 32, UHEX ' display 32-bit result

WATCH bigval, 32, UHEX

MULT32 FUNC 4, 2, 4
BREAK_NOW SUB 0

' Program Code

Start:
result = MULT32 $FFFF, $0100 ' get low word
resultHi = _ PARAM3, PARAM4 ' get high word
BREAK NOW

bigval = MULT32 $1234, $10 ' all return bytes assigned
BREAK NOW

END

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

' Use: MULT32 valuel, value2
' -- multiplies two wvalues

' -- when mixing a word and byte,

MULT32:

IF _ PARAMCNT

= 2 THEN

tmpWl = _ PARAMI
tmpW2 = _ PARAM2

ENDIF

IF _ PARAMCNT

= 3 THEN

tmpWl = WPARAMI12
tmpW2 = _ PARAM3

ENDIF

IF _ PARAMCNT

= 4 THEN

tmpWl = _ WPARAMI12
tmpW2 = _ WPARAM34

ENDIF

tmpW3 = tmpWl ** tmpW2
tmpW2 = tmpWl * tmpW2

RETURN tmpW2,

' Allows multiple breakpoints in program.

BREAK NOW:
BREAK
RETURN

tmpW3

the word must be declared first

' byte * byte

' word * byte

' word * word

' calculate high word
' calculate low word
' return 32 bits, LSW first

! Purpose. ..
U Author. ...
! E-mail....
! Started. ..
! Updated. ..

INTR_BLINK.SXB

Blink an LED using and Interrupt Service Routine

Jon Williams, EFX-TEK
jwilliamseefx-tek.com

10 JULY 2006

' Device Settings

DEVICE

SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

The Nuts and Volts of BASIC Stamps 2006

' File...... INTR_BLINK2.SXB

! Purpose. ..

0 Author.... Jon Williams, EFX-TEK
! E-mail.... jwilliams@efx-tek.com
! Started. ..

' Updated... 10 JULY 2006

' Device Settings

DEVICE SX28, OSC4MHZ, TURBO, STACKX,
FREQ 4 000 _000

ID "ISRBLINK"
L
' IO Pins
L
Led PIN RC.0 OUTPUT
L
' Constants
L
IsOn CON 1

IsOff CON 0

OnTime CON 100

OffTime CON 1900
L
' Variables
L
timer VAR Word

ISR Start:
INC timer
IF Led = IsOn THEN
IF timer = OnTime THEN
Led = IsOff
timer = 0

Column #137: SX/B Turns Sweet 16

Blink and LED using and Interrupt Service Routine

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

ENDIF
ELSE
IF timer = OffTime THEN
Led = IsOn
timer = 0
ENDIF
ENDIF
RETURNINT

Start:
GOTO Start
! =================================—==
1
' File...... ISR _DUAL MOTOR.SXB
' Purpose... Motor speed control using an interrupt
0 Author.... Jon Williams, EFX-TEK
! E-mail.... jwilliams@efx-tek.com
! Started. ..
U Updated... 10 JULY 2006

' Device Settings

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX

FREQ 20_000_000

ID "ISR MTR2"
L
' IO Pins

1 e e e e o o o e o e e o e e e e e e e e e =
UnusedB PIN RB INPUT PULLUP

UnusedC PIN RC INPUT PULLUP

MiCtrl PIN RA.0 OUTPUT

M1Dir PIN RA.1 OUTPUT

The Nuts and Volts of BASIC Stamps 2006

M2Ctrl
M2Dir

Column #137: SX/B Turns Sweet 16

' Constants

IsOn
IsOff

Fwd
Rev

' Variables

idx
phase
mlSpeed
m2Speed

tmpB1
tmpB2
tmpB3
tmpW1

PIN RA.2 OUTPUT
PIN RA.3 OUTPUT
CON 1

CON 0

CON 0

CON 1

VAR Byte

VAR Byte

VAR Byte

VAR Byte

VAR Byte

VAR Byte

VAR Byte

VAR Word

' loop control
' pwm phase for motor ISR
' motor speed

' subroutine work vars

ISR _Start:
INC phase

IF phase > 100 THEN

phase = 0
IF mlSpeed
M1iCtrl =
ENDIF
IF m2Speed
M2Ctrl =
ENDIF
ELSE
IF phase
M1Ctrl =
ENDIF
IF phase
M2Ctrl =
ENDIF
ENDIF
RETURNINT

> 0 THEN
IsOn

> 0 THEN
IsOn

> mlSpeed THEN

IsOff

> m2Speed THEN

IsOff

' update phase pointer

' time to reset?

! yes, start new cycle
! motor running?

' yes, turn it on

' past speed setting?
0 yes, motor bit off

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

DELAY

Start:

FOR idx = 5 TO 100 STEP 5
SET _MOTOR 0, idx, Fwd
DELAY 500

NEXT

FOR idx = 95 TO 0 STEP -5
SET _MOTOR 0, idx, Fwd
DELAY 500

NEXT

FOR idx = 5 TO 100 STEP 5
SET _MOTOR 0, idx, Rev
DELAY 500

NEXT

FOR idx = 95 TO 0 STEP -5
SET _MOTOR 0, idx, Rev
DELAY 500

NEXT

GOTO Start

1

' Subroutine Code

1

' Use: SET _MOTOR mtrNum, speed,
' -- 'mtrNum' is 0 to N

' -- 'speed' is 0 to 100%

' -- 'direction' is 0 (forward)
SET_MOTOR :

tmpBl = _ PARAM1

tmpB2 = _ PARAM2

tmpB3 = _ PARAM3

IF tmpBl = 0 THEN

direction

or 1 (reverse)

1

The Nuts and Volts of BASIC Stamps 2006

set motor speed + dir
delay in milliseconds

ramp up, forward

ramp down, forward
reverse

ramp up,

ramp down, reverse

save motor, speed, direction

1

1

mlSpeed = tmpB2 MAX 100

IF tmpB3 = Fwd THEN
M1Dir = Fwd

ELSE
mlSpeed = 100 - mlSpeed
M1Dir = Rev

ENDIF

ENDIF

IF tmpBl = 1 THEN
m2Speed = tmpB2 MAX 100
IF tmpB3 = Fwd THEN
M2Dir = Fwd
ELSE
m2Speed = 100 - m2Speed
M2Dir = Rev
ENDIF
ENDIF

RETURN

Use: DELAY ms
-- 'ms' is delay in milliseconds,

Column #137: SX/B Turns Sweet 16

' limit speed to 100
' set direction pin

' fix speed for reverse

' save byte value

' save word value

DELAY :

IF _ PARAMCNT = 1 THEN
tmpWl = PARAMI1

ELSE
tmpWl = _ WPARAMI2

ENDIF

PAUSE tmpW1l

RETURN
File...... ISR _MOTOR.SXB
Purpose... Motor speed control using an interrupt
Author.... Jon Williams, EFX-TEK
E-mail.... jwilliams@efx-tek.com
Started. ..
Updated... 10 JULY 2006

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX

FREQ 20_000_000

ID "ISR_MTR"

1 o o e e o o o e e e —
' IO Pins

1 e e e o e e e e e e e e e e e =
UnusedA PIN RA INPUT PULLUP

UnusedB PIN RB INPUT PULLUP

UnusedC PIN RC INPUT PULLUP

MlCtrl PIN RA.0 OUTPUT NOPULLUP

M1Dir PIN RA.1 OUTPUT NOPULLUP

1 e e e o e e e e e e e e e e e =
' Constants

1 o o e e o o o e e e —
IsOn CON 1

IsOff CON 0

Fwd CON 0

Rev CON 1

1 o o e e o o o e e e —
' Variables

1 e e e o e e e e e e e e e e e =
idx VAR Byte ' loop control

phase VAR Byte ' pwm phase for motor ISR
mlSpeed VAR Byte ' motor speed

tmpBl VAR Byte ' subroutine work vars

tmpB2 VAR Byte

tmpWl VAR Word

ISR Start:

INC phase ' update phase pointer
IF phase > 100 THEN ' time to reset?
phase = 0 ! yes, start new cycle
IF mlSpeed > 0 THEN ' motor running?
M1Ctrl = IsOn 0 yes, turn it on
ENDIF
ELSE
IF phase > mlSpeed THEN ' past speed setting?

The Nuts and Volts of BASIC Stamps 2006

M1Ctrl = IsOff
ENDIF
ENDIF
RETURNINT

DELAY SUB 1, 2

' Program Code

Start:

FOR idx = 5 TO 100 STEP 5
SET_MOTOR idx, Fwd
DELAY 500

NEXT

FOR idx = 95 TO 0 STEP -5
SET_MOTOR idx, Fwd
DELAY 500

NEXT

FOR idx = 5 TO 100 STEP 5
SET_MOTOR idx, Rev
DELAY 500

NEXT

FOR idx = 95 TO 0 STEP -5
SET_MOTOR idx, Rev
DELAY 500

NEXT

GOTO Start

! Use: SET MOTOR speed, direction

' -- 'speed' is 0 to 100%

SET_MOTOR:
tmpBl = _ PARAM1
tmpB2 = _ PARAM2

-- 'direction' is 0 (forward)

Column #137: SX/B Turns Sweet 16

0 yes, motor bit off

' set motor speed + dir
' delay in milliseconds

' ramp up, forward

' ramp down, forward

' ramp up, reverse

' ramp down, reverse

(reverse)

' save speed, direction

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

mlSpeed = tmpBl MAX 100 ' limit speed to 100

IF tmpB2 = Fwd THEN ' set direction pin
M1Dir = Fwd

ELSE
mlSpeed = 100 - mlSpeed ' fix speed for reverse
M1Dir = Rev

ENDIF

RETURN

' Use: DELAY ms
' -- 'ms' is delay in milliseconds, 1 - 65535

DELAY :
IF _ PARAMCNT = 1 THEN
tmpWl = PARAM1 ' save byte value
ELSE
tmpWl = _ WPARAM12 ' save word value
ENDIF
PAUSE tmpWl
RETURN
e
1
' File...... KNIGHT RIDER16.SXB
! Purpose... Demonstrates the 16-bit RBC port
0 Author.... Jon Williams, EFX-TEK
! E-mail.... jwilliams@efx-tek.com
Y Started. ..
! Updated... 10 JULY 2006

' Device Settings

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000 000

ID "RIDER 16"
L
' Variables
L
tmpWl VAR Word ' for subroutine(s)

PROGRAM Start

The Nuts and Volts of BASIC Stamps 2006

Start:
TRIS B = %00000000
TRIS C = %$00000000

RBC = %$00000000 00000001

Main:
DO
DELAY 75
RBC = RBC << 1
LOOP UNTIL RBC = %$10000000_00000000
DO
DELAY 75
RBC = RBC >> 1
LOOP UNTIL RBC = %00000000_00000001
GOTO Main

' Use: DELAY ms
' -- 'ms' is delay in milliseconds, 1

DELAY :
IF _ PARAMCNT = 1 THEN
tmpWl = _ PARAMI1
ELSE
tmpWl = WPARAMI2
ENDIF
PAUSE tmpW1l
RETURN

Column #137: SX/B Turns Sweet 16

' make all pins outputs

' shift LED left

' shift LED right

' save byte value

' save word value

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

! ENIC R Quiz_Show.SXB

! Purpose... Quiz Button lst-Press Detector
0 Author.... Jon Williams, EFX-TEK

! E-mail.... jwilliams@efx-tek.com

! Started. ..

! Updated... 10 JULY 2006

' Uses port B edge triggered interrup to determine which of four (can be
' (expanded to eight) buttons was pressed first. Output is to a 7-segment
' LED display.

' Requires SX/B 1.51.xx

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000_000

ID "QUIZBTNS"

e e e e e e e e e e e e e e
' IO Pins

1 o o e e e e e o e e e e e o e e e e —
UnusedA PIN RA INPUT PULLUP

UnusedB PIN RB INPUT PULLUP

Playerl PIN RB.0 INPUT NOPULLUP INTR FALL

Player2 PIN RB.1 INPUT NOPULLUP INTR FALL

Player3 PIN RB.2 INPUT NOPULLUP INTR FALL

Player4 PIN RB.3 INPUT NOPULLUP INTR FALL

Display PIN RC OUTPUT

1 o o e e o o o e e e —
' Constants

1 e e e o e e e e e e e e e e e =
! .gfedcba

Digl CON %$00000110

Dig2 CON %$01011011

Dig3 CON %$01001111

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

Dig4 CON %01100110
Dash CON %$01000000
L
' Variables
| e e e e e e e e e e e o — — — — — — — — — — — — — — — — — ——
idx VAR Byte ' loop control
winner VAR Byte ' which button pressed?
1 o e e e e e e o e e e e e e — — — — — —
INTERRUPT
L
ISR _Start:
WKPND_B = winner ' get winner
Chl: ' check channel
IF winner <> %0001 THEN Ch2 ' if not, try next
Display = Digl ' otherwise display

GOTO ISR _Done

Ch2:
IF winner <> %0010 THEN Ch3
Display = Dig2
GOTO ISR _Done

Ch3:
IF winner <> %0100 THEN Ch4
Display = Dig3
GOTO ISR_Done

Ch4:
IF winner <> %1000 THEN Uh Oh
Display = Dig4
GOTO ISR_Done

Uh Oh:
Display = Dash ' something went wrong
ISR_Done:
WKEN B = %11111111 ' no ISR until reset
END ' stop right here
RETURNINT

' Program Code

The Nuts and Volts of BASIC Stamps 2006

Column #137: SX/B Turns Sweet 16

Start:
WKPND B = $00000000 ' clear pending
Main:
DO
FOR idx = 0 TO 7 ' animate figure-8 "bug"
READ Figure8 + idx, Display
PAUSE 75
NEXT
LOOP

Figures8:

! .gfedcba
DATA %00000001
DATA %00000010
DATA %01000000
DATA %00010000
DATA %00001000
DATA %00000100
DATA %01000000
DATA %00100000

The Nuts and Volts of BASIC Stamps 2006

