
Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

Column #142, March 2007 by Jon Williams:

Livin’ Life on the SX28

It occurred to the other day that I’ve been programming in one form of BASIC or another for
over 25 years now… wow, that seems like a long time. I taught myself to program on the
venerable Timex-Sinclair 1000, my first “real” computer, which I purchased in the fall of
1981. One of my favorite TS-1000 programs was a version of Conway’s Game of Life, a
simple artificial life simulation. I used to start the program before work and was always
excited to come home and see if the “colony” was still evolving, had reached a state of
equilibrium, or had just died. Honestly, I was always saddened when the latter event
occurred – imagine being saddened by the “death” of a simulated cell colony… welcome to
my wackiness!

Conway’s Game of Life (CGoL) is a very simple program, and though it’s been around since
the 70’s, it is still considered an important learning tool. I was telling my friend, Ryan Clarke,
a professor at the University of Advancing Technology in Phoenix about this project and he
told me that there are at least two courses on their campus that use CGoL as part of the
curriculum. That’s the thing about CGoL; it’s simple, it’s elegant, and yet it has implications
in so many fields from basic gaming to advanced robotics.

In case you’ve never seen CGoL, it works like this: a rectangular grid serves as the home of a
digital cell colony. A set of rules are applied that cause the colony to evolve from generation-
to-generation.

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

Ultimately, the colony with either:

1) Die (no living cells)
2) Live in static equilibrium (no cells change)
3) Live in dynamic equilibrium (cells change in a repeating pattern)

The rules that drive inter-generation change are simple, and are based on the number of living
“neighbors” that surround each cell.

4) With one or fewer neighbors, the cell dies (of loneliness)
5) With two neighbors, there is no change in the cell state
6) With three neighbors, the cell lives
7) With four neighbors, the cell dies (of over-crowding)

For me, there are few more compelling programs than Conway’s Game of Life. My
rediscovery (running Java versions online) of CGoL caused me to wonder if I could translate
it to the SX. It was easy on the TS-1000 (or other “big” PC), but the SX28 (using SX/B)
doesn’t support multi-dimensional arrays and that’s a requirement to manage the cell colony
grid.

I decided to give it a shot for two reasons: First, it would just be plain fun and would allow
me to incorporate some electronics into one of Joshua’s (my youngest brother) paintings.
Second, it would give me a reason to build a platform to experiment with discrete LED
multiplexing. In fact, I could build a very generic circuit that could is, essentially, a mini
game console and CGoL would be the first demo. So that’s what I did.

The circuit is easy, and by using the SX28 the logical size of the grid is 8x8; this allows us to
use the pins on RB to control the LED cathodes and the pins on RC to control the LED
anodes. This leaves the pins on RA available for button inputs; again, the circuit generic and
can be used for a whole host of experiments. Figures 142.1 (processor and buttons) and 142.2
(LED matrix) show the schematic.

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

Figure 142.1: Digital Life Schematic Page 1

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

Figure 142.2: Digital Life Schematic Page 2

Now, I’m pretty good with a soldering iron, but there was no way in Heaven or on Earth that I
was going to connect the processor and 64 discrete LEDs using point-to-point wiring. If you
choose to go that route, you’re a braver soul than me. As with the Pinewood Derby Lane
Timer we made in January, I entered the circuit in ExpressSCH and then created the board in
ExpressPCB.

I may have made this statement before, but I think it’s worth repeating: DO NOT – under any
circumstances – be tempted to skip past ExpressSCH and go right to ExpressPCB. It’s not
that I layout a lot of boards, but I had tried ExpressPCB way back before ExpressSCH was

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

part of the package, and while the PCB layout program is very nice and easy to work with, the
value to connecting to a schematic [netlist] as an aid to the PCB layout cannot be overstated.

Of course, for this project – should you like it as is – you don’t have to worry about that as
I’ve already done the layout work (which took about eight hours). But… if you decide to
make a change, copy and modify the schematic first, then open and copy the PCB file, finally
linking it to the new schematic. Make you PCB changes from there allowing ExpressPCB to
tell you what connects to what. Please trust me on this as there is nothing more frustrating
than spending time on a nice, neat PCB layout, only to find that when it gets back from the
board house there’s a self-created error.

For circuit components, I tend to order from Mouser. When I lived in Dallas I had the
opportunity to visit their facilities and it is really a first-class operation. Their prices are good,
too. Of course, vendors like Digi-Key and Jameco also provide great products and service. I
just want to let you know that the schematic file that you can download as part of this article
includes Mouser part numbers. There is nothing exotic, though, and you should be able to get
the components anywhere.

Construction is easy – it’s really just a big solder job. As always, I start with the “low lying”
components (e.g., resistors) and work my way up to the taller components like the power-
supply cap and the power connector. I started by soldering in everything except the LEDs.
Despite my confidence in the schematic and the board, I certainly wasn’t going to spend the
time to solder in 64 discrete LEDs only to find I had screwed up. With everything but the
LEDs in place I connected power and download a little test program to poll and display the
status of the switch inputs (I used the Debug window for this). Guess what? – I actually had a
duff SX (one pin on RA, anyway).

After I knew the power supply and buttons worked, the next step was the LEDs. Being a
cautious guy, however, I soldered them in eight at a time and then ran a quick test program to
make sure that those in the board were working. In the end, everything worked perfectly and
it was time to start on the Game of Life program.

Creating Digital Life
In order to use the 8x8 LED matrix as a display for the game, it needs constant (periodic)
refreshing – a logical choice is to use an interrupt. To keep things easy, I decided on a one
millisecond interrupt period; there is nothing magic about that value except that it’s a
convenient way to enable fairly precise delays.

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

Wait a minute, what about PAUSE? Well, remember that when we activate periodic
interrupts any timing sensitive instructions will be adversely affected. So, you’ll see that
there is no PAUSE instruction used in the program, and yet there is a way to do delays with
millisecond (+0/-1) resolution.

Let’s have a look at the interrupt code.

INT_HANDLER:
 Anodes = %00000000
 READ Col_Mask + col, Cathodes
 Anodes = dispBuf(col)
 INC col
 IF col = 8 THEN
 col = 0
 ENDIF

Update_Timer:
 IF ms > 0 THEN
 DEC ms
 ENDIF

LFSR:
 IF seed = 0 THEN
 seed = 24
 ENDIF
 ASM
 MOV W, #$1D
 CLRB C
 RL seed
 SNB C
 XOR seed, W
 ENDASM

ISR_Exit:
 RETURNINT

As you can see, the ISR code is divided into three distinct elements: display update, timer
update, and random value update. First things first. The bits to be displayed are kept in an
array called dispBuf(); with eight bytes this gives us a 64-bit (8x8) array for the colony. The
orientation of the LEDs on the board is designed to match Cartesian coordinates, that is, the
lower left LED corresponds to dispBuf(0), bit 0, and the upper right LED corresponds to
dispBuf(7), bit 7.

The display update starts by clearing the anode outputs and then reading the column mask
from a DATA table (using the current column value). I like the table approach versus
creating a mask by bit shifting; it seems more obvious and I think it adds a bit of flexibility.

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

With the column selected, the anodes are read from dispBuf(col); at this point, the column is
being displayed (until the next ISR call). Then the column pointer is incremented and
wrapped back to zero once it passes the 7th column. Note that the variable, col, should not be
manipulated outside the ISR.

The second section updates another dedicated ISR variable called ms. This variable is a word
(16 bits) so that we can create delays up to 65,535 milliseconds. Through each pass of the
ISR this variable is checked for being non-zero; when it is it gets decremented. We’ll see
how to use this value in place of PAUSE in just a bit.

Finally, there is a section called LFSR (which stands for linear feedback shift register). In this
program it is used to randomize the third dedicated ISR variable called seed. When I first
started the program I used the built-in RANDOM function but found that the results weren’t
visually pleasing. So I went out to James Newton’s SX List (www.sxlist.com, an excellent
resource) and found an 8-bit LFSR routine that gave me the visual results I was looking for.

You might wonder why this is embedded in the ISR. Of course, I could have created a
traditional function but I thought it would be nice to have a running random number. As you
can imagine, I work with a lot of folks that are new to BASIC Stamps and the SX and the
interesting thing is that many of them believe that the RANDOM function is a “background”
process that runs all the time. Well, in this case it is. We simply need to copy the value of
seed whenever we want an 8-bit random number.

Scrollin’, Scrollin’, Scrollin’…
As one of the possible uses for the 8x8 LED matrix is a scrolling display, let’s add that to the
front end of the game program to make things a bit snazzy. Sticking with the K.I.S.S.
principle, we’ll store the scrolling banner in a big DATA table and simply loop thought it, the
effect is an 8x8 window sliding over the banner as shown in Figure 142.3.

Figure 142.3: Scrolling Banner Map

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

Note that there are eight blank columns on either end of the banner text; the front-end blanks
let the banner scroll on to the display; the back-end blanks push it off.

The arrows above the figure indicate the starting and ending columns for the main portion of
the loop. An inner loop will iterate from that starting point out seven additional columns to
fill the display buffer. Here’s the code:

Start:
 ' scrolling banner
 FOR tmpB1 = 0 TO 45
 tmpB2 = tmpB1
 FOR idxCol = 0 TO 7
 READINC Banner + tmpB2, dispBuf(idxCol)
 NEXT
 DELAY 75
 NEXT

The outer (scrolling) loop is controlled by tmpB1. A copy is made in tmpB2 that will be used
as an offset for the READINC function. The inner loop, controlled by idxCol, runs eight
times to fill the eight columns of the display with values from the DATA table. The nice
thing about the READINC function is that it automatically updates the offset variable
(tmpB2) for us. Once the display buffer is filled we need to insert a short delay to control the
column-to-column scrolling speed.

Here’s the delay subroutine that replaces the use of PAUSE in this program.

DELAY:
 IF __PARAMCNT = 1 THEN
 ms = __PARAM1
 ELSE
 ms = __WPARAM12
 ENDIF
 DO
 ' wait for timer to expire
 LOOP UNTIL ms = 0
 RETURN

Pretty simple, isn’t it? The subroutine is setup to allow a byte or word to be passed to it. That
value gets loaded into variable ms and then a DO-LOOP holds the program right where it is
until ms is zero. Remember, ms is being decremented every millisecond in the ISR when it’s
greater than zero. This is a good bit of code for your SX/B library, especially as you delve
more deeply into interrupts.

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

Framed!
We’ve just seen one style of animation, how about another – something akin to cell animation
in a cartoon. We can do this kind of animation by storing the frames in a DATA table. For
frames that are going to run in order, as we will do here, the code is assisted by lining up the
frames end-to-end. Figure 142.4 shows a simple four-frame sequence that will run after the
scrolling banner moves out of the display.

Figure 142.4: Maps for Animation Frames

Frames_Animation:
 FOR tmpB1 = 0 TO 24 STEP 8
 tmpB2 = tmpB1
 FOR idxCol = 0 TO 7
 READINC Frame1 + tmpB2, dispBuf(idxCol)
 NEXT
 DELAY 100
 NEXT

It’s clear that the code is identical to the scrolling animation except that the outer loop steps
eight columns (one frame) each time through, and the base pointer starts at Frame1 instead of
Banner.

Now that the fanfare is complete we can get into the meat of the Game of Life program. At
the start of the main program loop a question mark will be displayed and then the buttons
scanned.

Main:
 FOR idxCol = 0 TO 7
 READ Q_Mark + idxCol, dispBuf(idxCol)
 NEXT

User_Select:
 DO

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

 btns = SCAN_BUTTONS
 LOOP UNTIL btns <> %0000

Here’s the routine the scans and debounces the buttons.

SCAN_BUTTONS:
 tmpB1 = %00000000
 FOR tmpB2 = 1 TO 5
 tmpB1 = tmpB1 | BtnPort
 DELAY 10
 NEXT
 tmpB1 = tmpB1 ^ %11111111
 tmpB1 = tmpB1 & %00001111
 RETURN tmpB1

The buttons are configured as active-low inputs to the SX so the subroutine starts by clearing
the result variable, tmpB1. It then runs a short loop with a 10 millisecond pad between scans.
With active-low buttons, a short release (bounce) will cause the input to go high (because of
the pull-up) and the 1 bit will get OR’d into the result; this will stay there through the entire
scan cycle.

At the end the scan result gets inverted to make the buttons look active-high and the unused
inputs are stripped away. The design of this function ensures that a button must be down and
stay down for 50 milliseconds to call it a good press. Using the loop to check the switch state
at short intervals helps eliminate contact bounce and noise.

With the switches scanned and debounced the program can check for and process valid
“press” events. The first button will cause the cell matrix to be randomly populated.

Randomize_Cells:
 IF btns = B_RAND THEN
 FOR idxCol = 0 TO 7
 dispBuf(idxCol) = seed
 DELAY 5
 NEXT
 DELAY 50
 GOTO User_Select
 ENDIF

Here you can see the use of the system random value, seed. Note that there is a short delay in
the middle of the cell-populating loop; this lets the LFSR code in the ISR run a few times
between calls. A short delay is also added after the loop just to hold the display a bit if the
randomizing button is held down.

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

The next two buttons load fixed colony patterns from DATA tables. The first pattern loads
“blinkers” that will oscillate in a state of dynamic equilibrium. The second pattern is called a
“glider.” It will move from the lower left corner to the upper right corner, ultimately
achieving a state of static equilibrium (a living colony that does not change from one
generation to the next).

Load_Pattern1:
 IF btns = B_PAT1 THEN
 RELEASE
 FOR idxCol = 0 TO 7
 READ Pattern1 + idxCol, dispBuf(idxCol)
 NEXT
 GOTO User_Select
 ENDIF

Load_Pattern2:
 IF btns = B_PAT2 THEN
 RELEASE
 FOR idxCol = 0 TO 7
 READ Pattern2 + idxCol, dispBuf(idxCol)
 NEXT
 GOTO User_Select
 ENDIF

As it stands now the program only has two fixed patterns in memory. If you want to add
more, then change the code to keep track of a pattern pointer and use the PB2 and PB3
buttons to increment or decrement that pointer before loading the pattern.

The last button launches the game with generation zero being whatever the display is current
showing – including the initial question mark prompt. This section also handles getting back
to the button scanning if more than one button was pressed.

Run_Simulation:
 IF btns = B_RUN THEN
 RELEASE
 GOTO Its_Alive
 ELSE
 GOTO User_Select
 ENDIF

Within the button handlers there is a subroutine employed called RELEASE.
This is used to hold the program until the buttons are cleared.

RELEASE:
 DO
 tmpB1 = SCAN_BUTTONS
 LOOP UNTIL tmpB1 = %0000

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

 RETURN

As you can see, this routine uses a work variable (tmpB1) so the result of our last button scan
(btns) is not affected.

And now we get to the nitty-gritty. The code at Its_Alive is what runs the game logic. What
this section does is iterate through all of the cells of the display buffer, counting the neighbors
for each. The rule set is applied and the result are written to a secondary buffer called
newGen(). We can’t operate directly on the display buffer as this would change the colony
mid generation and the results would not accurately reflect the rules. Once all of the cells in
the display buffer have been scanned and analyzed, the newGen() buffer is copied to the
display. After a scan of the keys and short delay the whole process starts over.

Its_Alive:
 FOR idxCol = 0 TO 7
 FOR idxRow = 0 TO 7
 COUNT_NEIGHBORS
 IF neighbors <= 1 THEN
 ' alone... dies

 newGen(idxCol) =
 CLR_BIT newGen(idxCol), idxRow
 ENDIF
 IF neighbors = 2 THEN
 ' no change
 cell = GET_BIT dispBuf(idxCol), idxRow

 newGen(idxCol) =
 PUT_BIT newGen(idxCol), idxRow, cell
 ENDIF
 IF neighbors = 3 THEN
 ' lives!

 newGen(idxCol) =
 SET_BIT newGen(idxCol), idxRow
 ENDIF
 IF neighbors >= 4 THEN
 ' crowded... dies

 newGen(idxCol) =
 CLR_BIT newGen(idxCol), idxRow
 ENDIF
 NEXT
 NEXT

 FOR idxCol = 0 TO 7
 dispBuf(idxCol) = newGen(idxCol)
 NEXT

 DELAY 200
 btns = SCAN_BUTTONS

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

 IF btns = %0000 THEN Its_Alive
 RELEASE
 GOTO Main

I moved the code for COUNT_NEIGHBORS out of the main loop because it was just very
big and bulky. I tried to figure out some elegant way to do the testing, but in the end found
that it was simply best to use a bit of blunt force. It’s long so I won’t show the whole thing
here, but what you’ll see when you download the full listing is that COUNT_NEIGHHBORS
has eight sections that look like this:

 chkCol = idxCol - 1
 chkRow = idxRow - 1
 cell = GET_CELL
 neighbors = neighbors + cell

You see, each cell has eight possible neighbors – but not all cells; the corner cells, for
example, only have three neighbors. To deal with this I created a routine called GET_CELL
which is really just a wrapper for GET_BIT. The code in GET_CELL ensures that we don’t
try to ask for a bit that exceeds the bounds of the array.

GET_CELL:
 tmpB1 = 0
 IF chkCol >= 0 THEN
 IF chkCol <= 7 THEN
 IF chkRow >= 0 THEN
 IF chkRow <= 7 THEN

 tmpB1 =
 GET_BIT dispBuf(chkCol), chkRow
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 RETURN tmpB1

Those of us that have been using the BS2 family for a long time are well aware of and enjoy
the use of the .LOWBIT() modifier of variables – this does not exist in SX/B. Well, not as
part of the standard language, so we just have to add it (or something like it) ourselves.

To get .LOWBIT() functionality actually requires three separate functions; they’re actually
very simple and provide a bit more flexibility than .LOWBIT(). These functions expect a
byte and return a byte; this lets us send the result to any variable we choose, including to the
variable who’s value was passed as a parameter to the function.

GET_BIT:
 tmpB1 = __PARAM1

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

 tmpB2 = __PARAM2

 tmpB2 = 1 << tmpB2
 tmpB1 = tmpB1 & tmpB2
 IF tmpB1 > 0 THEN
 tmpB1 = 1
 ENDIF
 RETURN tmpB1

SET_BIT:
 tmpB1 = __PARAM1
 tmpB2 = __PARAM2

 tmpB2 = 1 << tmpB2
 tmpB1 = tmpB1 | tmpB2
 RETURN tmpB1

CLR_BIT:
 tmpB1 = __PARAM1
 tmpB2 = __PARAM2

 tmpB2 = 1 << tmpB2
 tmpB2 = tmpB2 ^ %11111111
 tmpB1 = tmpB1 & tmpB2
 RETURN tmpB1

All three functions take the byte parameter into tmpB1 and the position value into tmpB2.
The position value is turned into a bit mask for that position. For bit checking or setting, the
mask is left as is; for bit clearing the mask gets inverted. The functions only work on bytes,
but could easily be modified to work with words.

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

Let The Games Begin!
And there you have it – a simple digital game console and enough framework functions to
create a wide variety of low-resolution games. I wonder… what could you create with this
neat little platform? It’s easy to get jaded by all the resources we have with PC games and
even hand-held units with color LCDs; can you create something compelling and entertaining
with a simple 8x8 LED matrix and four pushbuttons? I’m betting you can, if you’ll simply
put your mind to it and let your imagination run wild.

Until next time… Happy Stamping!

Resources:
http://www.sxlist.com
http://en.wikipedia.org/wiki/Conway's_Game_of_Life

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

Project Bill of Materials

Designator Value Source
C1 0.47 Mouser 80-C320C474M5U
C2 47 Mouser 647-UVR1C470MDD
C3 0.1 Mouser 80-C315C104M5U
D1-D64 LED Mouser 859-LTL-4222N
PB1-PB4 Mouser 612-TL59F160Q
R1 10K Mouser 299-10K-RC
R6-R9 220 Mouser 299-220-RC
R10-R17 470 Mouser 299-470-RC
RN1 10K Mouser 264-10K-RC
Rx (optional)
U1 SX28AC/DP Parallax SX28AC/DP-G
 socket Mouser 571-3902619
VR1 LF50CP Mouser 511-LF50CP
X1 2.1 mm Mouser 806-KLDX-0202-A
X2 for SX-Key Mouser 517-5111TG
X3 for resonator Mouser 506-510-AG91D
PCB From ExpressPCB.com

Source Code
'
' File...... Life.SXB
' Purpose... Digital Life Program
' Author.... Jon Williams
' Copyright (c) 2007 Jon Williams
' Some Rights Reserved
' -- see http://creativecommons.org/licenses/by/2.5/
' E-mail.... jwilliams@efx-tek.com
' Started...
' Updated... 18 JAN 2007
'
' ===

' ---
' Program Description
' ---
'
' Conway's Game of Life simulation.
' -- see: http://en.wikipedia.org/wiki/Conway's_Game_of_Life
'
' PB1 - Randomize population

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

' PB2 - load pattern 1
' PB3 - load pattern 2
' PB4 - Run
'
' Pressing any button while the simulation is running will stop it and
' cause the program to return to a "?" prompt.

' ---
' Conditional Compilation Symbols
' ---

' ---
' Device Settings
' ---

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX, BOR42
FREQ 4_000_000
ID "LIFE"

' ---
' IO Pins
' ---

Anodes PIN RC OUTPUT
Cathodes PIN RB OUTPUT
BtnPort PIN RA

' ---
' Constants
' ---

Yes CON 1
No CON 0

B_RAND CON %0001
B_PAT1 CON %0010
B_PAT2 CON %0100
B_RUN CON %1000

Alive CON 1
Dead CON 0

' ---
' Variables
' ---

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

dispBuf VAR Byte (8) ' LED display buffer
newGen VAR Byte (8) ' new generation buffer

col VAR Byte ' display column (ISR)
ms VAR Word ' for delay timing (ISR)
seed VAR Byte ' running random value (ISR)

btns VAR Byte
btnRand VAR btns.0
btnPat1 VAR btns.1
btnPat2 VAR btns.2
btnRun VAR btns.3

idxCol VAR Byte
idxRow VAR Byte
neighbors VAR Byte
chkRow VAR Byte
chkCol VAR Byte
cell VAR Byte

tmpB1 VAR Byte ' work variables
tmpB2 VAR Byte
tmpB3 VAR Byte

' ---
 INTERRUPT 1000 ' run every millisecond
' ---

 GOTO INT_HANDLER

' ===
 PROGRAM Start
' ===

' ---
' Subroutine Declarations
' ---

DELAY SUB 1, 2 ' delay in 1 ms units
RELEASE SUB 0 ' wait for button release
COUNT_NEIGHBORS SUB 0 ' counts cell neighbors

SCAN_BUTTONS FUNC 1, 0 ' scan buttons on RA
GET_BIT FUNC 1, 2 ' get bit value
SET_BIT FUNC 1, 2 ' sets a bit in a byte
CLR_BIT FUNC 1, 2 ' clears a bit in a byte
PUT_BIT FUNC 1, 3 ' writes bitVal into byte
GET_CELL FUNC 1, 0 ' get cell status

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

' ---
' Program Code
' ---

Start:
 ' scrolling banner
 FOR tmpB1 = 0 TO 45 ' columns to scroll
 tmpB2 = tmpB1 ' copy of left column pos
 FOR idxCol = 0 TO 7 ' fill character buffer
 READINC Banner + tmpB2, dispBuf(idxCol) ' load character column
 NEXT
 DELAY 75
 NEXT

Frames_Animation:
 FOR tmpB1 = 0 TO 24 STEP 8 ' step through frames
 tmpB2 = tmpB1 ' copy of left column pos
 FOR idxCol = 0 TO 7 ' fill character buffer
 READINC Frame1 + tmpB2, dispBuf(idxCol) ' load character column
 NEXT
 DELAY 100
 NEXT

Main:
 FOR idxCol = 0 TO 7 ' show ?
 READ Q_Mark + idxCol, dispBuf(idxCol)
 NEXT

User_Select:
 DO
 btns = SCAN_BUTTONS
 LOOP UNTIL btns <> %0000 ' wait for button press

Randomize_Cells:
 IF btns = B_RAND THEN
 FOR idxCol = 0 TO 7
 dispBuf(idxCol) = seed ' randomize this column
 DELAY 5 ' let rand gen run
 NEXT
 DELAY 50
 GOTO User_Select
 ENDIF

Load_Pattern1: ' load blinkers
 IF btns = B_PAT1 THEN
 RELEASE
 FOR idxCol = 0 TO 7
 READ Pattern1 + idxCol, dispBuf(idxCol)
 NEXT

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

 GOTO User_Select
 ENDIF

Load_Pattern2: ' load glider
 IF btns = B_PAT2 THEN
 RELEASE
 FOR idxCol = 0 TO 7
 READ Pattern2 + idxCol, dispBuf(idxCol)
 NEXT
 GOTO User_Select
 ENDIF

Run_Simulation:
 IF btns = B_RUN THEN
 RELEASE
 GOTO Its_Alive
 ELSE
 GOTO User_Select
 ENDIF

Its_Alive:
 FOR idxCol = 0 TO 7
 FOR idxRow = 0 TO 7
 COUNT_NEIGHBORS
 IF neighbors <= 1 THEN
 ' alone... dies
 newGen(idxCol) = CLR_BIT newGen(idxCol), idxRow
 ENDIF
 IF neighbors = 2 THEN
 ' no change
 cell = GET_BIT dispBuf(idxCol), idxRow
 newGen(idxCol) = PUT_BIT newGen(idxCol), idxRow, cell
 ENDIF
 IF neighbors = 3 THEN
 ' lives!
 newGen(idxCol) = SET_BIT newGen(idxCol), idxRow
 ENDIF
 IF neighbors >= 4 THEN
 ' crowded... dies
 newGen(idxCol) = CLR_BIT newGen(idxCol), idxRow
 ENDIF
 NEXT
 NEXT

 FOR idxCol = 0 TO 7 ' update display
 dispBuf(idxCol) = newGen(idxCol)
 NEXT

 DELAY 200 ' inter-generation timing
 btns = SCAN_BUTTONS ' (plus 50 ms for scan)
 IF btns = %0000 THEN Its_Alive ' keep going if no button

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

 RELEASE
 GOTO Main

' ---
' Subroutine Code
' ---

' Interrupt handler

INT_HANDLER:
 Anodes = %00000000 ' clear display
 READ Col_Mask + col, Cathodes ' enable column
 Anodes = dispBuf(col) ' output LEDs for column
 INC col ' point to next column
 IF col = 8 THEN ' reached last column?
 col = 0 ' yes, reset
 ENDIF

Update_Timer:
 IF ms > 0 THEN ' delay timer running?
 DEC ms ' yes, decrement
 ENDIF

LFSR: ' randomize "seed"
 IF seed = 0 THEN
 seed = 24
 ENDIF
 ASM
 MOV W, #$1D
 CLRB C
 RL seed
 SNB C
 XOR seed, W
 ENDASM

ISR_Exit:
 RETURNINT

' ---

' Use: DELAY msec

DELAY:
 IF __PARAMCNT = 1 THEN
 ms = __PARAM1 ' get byte parameter
 ELSE
 ms = __WPARAM12 ' get word parameter
 ENDIF
 DO
 ' wait for timer to expire

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

 LOOP UNTIL ms = 0
 RETURN

' ---

' Use: result = SCAN_BUTTONS
' -- scans active-low buttons; returns 1 for pressed button
' -- routine consumes about 50 milliseconds

SCAN_BUTTONS:
 tmpB1 = %00000000 ' assume all pressed
 FOR tmpB2 = 1 TO 5
 tmpB1 = tmpB1 | BtnPort ' scan port
 DELAY 10
 NEXT
 tmpB1 = tmpB1 ^ %11111111 ' invert; 1 = pressed
 tmpB1 = tmpB1 & %00001111 ' clear unused bits
 RETURN tmpB1

' ---

RELEASE:
 DO
 tmpB1 = SCAN_BUTTONS
 LOOP UNTIL tmpB1 = %0000
 RETURN

' ---

' Use: result = GET_BIT value, position
' -- returns 1 or 0

GET_BIT:
 tmpB1 = __PARAM1 ' save value
 tmpB2 = __PARAM2 ' save position

 tmpB2 = 1 << tmpB2 ' create mask
 tmpB1 = tmpB1 & tmpB2 ' isolate bit
 IF tmpB1 > 0 THEN
 tmpB1 = 1
 ENDIF
 RETURN tmpB1

' ---

' Use: result = SET_BIT value, position
' -- returns copy of value with position bit set

SET_BIT:
 tmpB1 = __PARAM1 ' save value
 tmpB2 = __PARAM2 ' save position

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

 tmpB2 = 1 << tmpB2 ' create mask
 tmpB1 = tmpB1 | tmpB2 ' set the bit
 RETURN tmpB1

' ---

' Use: result = CLR_BIT value, position
' -- returns value with position bit cleared

CLR_BIT:
 tmpB1 = __PARAM1 ' save value
 tmpB2 = __PARAM2 ' save position

 tmpB2 = 1 << tmpB2 ' create mask
 tmpB2 = tmpB2 ^ %11111111 ' invert the mask
 tmpB1 = tmpB1 & tmpB2 ' clear the bit
 RETURN tmpB1

' ---

' Use: result = PUT_BIT value, position, bitVal
' -- writes bitVal to value.position

PUT_BIT:
 tmpB1 = __PARAM1 ' save value
 tmpB2 = __PARAM2 ' save position
 tmpB3 = __PARAM3.0 ' save bit value

 tmpB2 = 1 << tmpB2 ' create mask
 IF tmpB3 = 1 THEN
 tmpB1 = tmpB1 | tmpB2 ' set the bit
 ELSE
 tmpB2 = tmpB2 ^ %11111111 ' invert the mask
 tmpB1 = tmpB1 & tmpB2 ' clear the bit
 ENDIF
 RETURN tmpB1

' ---

' Use: COUNT_NEIGHBORS
' -- counts live neighbors of cell in dispBuf
' -- location of cell in idxCol/idxRow

COUNT_NEIGHBORS:
 neighbors = 0 ' reset neighbors count

 chkCol = idxCol - 1 ' SW
 chkRow = idxRow - 1
 cell = GET_CELL
 neighbors = neighbors + cell

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

 chkCol = idxCol - 1 ' W
 chkRow = idxRow + 0
 cell = GET_CELL
 neighbors = neighbors + cell

 chkCol = idxCol - 1 ' NW
 chkRow = idxRow + 1
 cell = GET_CELL
 neighbors = neighbors + cell

 chkCol = idxCol + 0 ' N
 chkRow = idxRow + 1
 cell = GET_CELL
 neighbors = neighbors + cell

 chkCol = idxCol + 1 ' NE
 chkRow = idxRow + 1
 cell = GET_CELL
 neighbors = neighbors + cell

 chkCol = idxCol + 1 ' E
 chkRow = idxRow + 0
 cell = GET_CELL
 neighbors = neighbors + cell

 chkCol = idxCol + 1 ' SE
 chkRow = idxRow - 1
 cell = GET_CELL
 neighbors = neighbors + cell

 chkCol = idxCol + 0 ' S
 chkRow = idxRow - 1
 cell = GET_CELL
 neighbors = neighbors + cell

 RETURN

' ---

' Use: result = GET_CELL
' -- returns value of cell (0 or 1) from dispBuf array
' -- uses bound checking for "chkCol" and "chkRow"

GET_CELL:
 tmpB1 = 0
 IF chkCol >= 0 THEN
 IF chkCol <= 7 THEN
 IF chkRow >= 0 THEN
 IF chkRow <= 7 THEN
 tmpB1 = GET_BIT dispBuf(chkCol), chkRow

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

 ENDIF
 ENDIF
 ENDIF
 ENDIF
 RETURN tmpB1

' ===
' User Data
' ===

Col_Mask:
 DATA %11111110 ' for common cathode LEDs
 DATA %11111101
 DATA %11111011
 DATA %11110111
 DATA %11101111
 DATA %11011111
 DATA %10111111
 DATA %01111111

Banner:
' col 76543210
 DATA %00000000 ' pre-string pad
 DATA %00000000
 DATA %00000000
 DATA %00000000
 DATA %00000000
 DATA %00000000
 DATA %00000000
 DATA %00000000

Ltr_S:
 DATA %00110001
 DATA %01001001
 DATA %01001001
 DATA %01001001
 DATA %01000110

 DATA %00000000

Ltr_X:
 DATA %01100011
 DATA %00010100
 DATA %00001000
 DATA %00010100
 DATA %01100011

 DATA %00000000

Dash:

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

 DATA %00001000
 DATA %00001000
 DATA %00001000

 DATA %00000000

Ltr_L:
 DATA %01111111
 DATA %00000001
 DATA %00000001
 DATA %00000001
 DATA %00000001

 DATA %00000000

Ltr_I:
 DATA %01000001
 DATA %01111111
 DATA %01000001

 DATA %00000000

Ltr_F:
 DATA %01111111
 DATA %01001000
 DATA %01001000
 DATA %01001000
 DATA %01000000

 DATA %00000000

Ltr_E:
 DATA %01111111
 DATA %01001001
 DATA %01001001
 DATA %01001001
 DATA %01000001

Pad2:
 DATA %00000000 ' post string pad
 DATA %00000000
 DATA %00000000
 DATA %00000000
 DATA %00000000
 DATA %00000000
 DATA %00000000
 DATA %00000000

' Animation frames

Frame1:

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

 DATA %00000000
 DATA %00000000
 DATA %00000000
 DATA %00011000
 DATA %00011000
 DATA %00000000
 DATA %00000000
 DATA %00000000

Frame2:
 DATA %00000000
 DATA %00000000
 DATA %00011000
 DATA %00100100
 DATA %00100100
 DATA %00011000
 DATA %00000000
 DATA %00000000

Frame3:
 DATA %00000000
 DATA %00111100
 DATA %01000010
 DATA %01000010
 DATA %01000010
 DATA %01000010
 DATA %00111100
 DATA %00000000

Frame4:
 DATA %00111100
 DATA %01000010
 DATA %10000001
 DATA %10000001
 DATA %10000001
 DATA %10000001
 DATA %01000010
 DATA %00111100

Q_Mark:
 DATA %00000000
 DATA %00110000
 DATA %01000000
 DATA %01000101
 DATA %01001000
 DATA %00110000
 DATA %00000000
 DATA %00000000

Pattern1:
 DATA %01000000 ' blinkers

Column #142: Livin' Life on the SX28

The Nuts & Volts of BASIC Stamps 2007

 DATA %01000000
 DATA %01000100
 DATA %00000110
 DATA %00000110
 DATA %00000010
 DATA %11100000
 DATA %00000000

Pattern2:
 DATA %00000100 ' glider
 DATA %00000101
 DATA %00000110
 DATA %00000000
 DATA %00000000
 DATA %00000000
 DATA %00000000
 DATA %00000000

