
Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

Column #141, January 2007 by Jon Williams:

Ready...Set...Code!

Having been a part of the BASIC Stamp community since 1994, I’ve had the wonderfully-good
fortune to meet a lot of experimenters, and – due to my exposure through Nuts & Volts and six
years with Parallax – I’ve been asked to create a wide variety of projects. One of the most
frequently requested, but that is not really practical with a BASIC Stamp, is a Pinewood
Derby racing timer. Well, now that programming the SX is nearly as easy as programming
the BASIC Stamp, the race timer can finally be realized – and even provide one-millisecond
resolution using nothing but BASIC.

If you’ve read my past articles on SX/B you may remember that I’ve always taken a bit of a
cautionary position when it comes to using interrupts. We must always keep in mind that
interrupts steal time from the foreground program, and we must be particularly mindful when
using time-sensitive instructions like PAUSE, SEROUT, etc. That said, there are times when
using interrupt-driven code is actually the better choice over linear programming. Our race
timer is one of those kinds of projects; especially since we want to create a timer with a one-
millisecond resolution while multiplexing a multi-digit LED display.

For a compiler that’s absolutely free, SX/B does a fantastic job with interrupts – better than
most BASIC compilers that cost hundreds of dollars. Still, interrupts should be approached
carefully. With a bit of thought and planning we can have interrupts without headaches
running on the SX in SX/B. In fact, we’ll see that with the improvements since SX/B 1.51,
this project becomes nearly trivial.

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

First things first: what does the race timer need to do? For starters (no pun intended) the timer
should accept a remote start signal so that it can be used in single- or multi-track setups.
We’ll also need a remote clear signal so that we can reset the time to zero before a race.
When running we need to keep track of the time and, most importantly, display it on a five-
digit, seven segment display.

Figure 141.1: Pinewood Derby Lane Timer, Page 1 of Schematic

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

Figure 141.2: Pinewood Derby Lane Timer, Page 2 of Schematic

Figures 141.1 and 141.2 show the schematic for the timer using an SX28. Much of the I/O is
devoted to the 7-segment displays, with a few bits to monitor the finish line photo-transistor
and Clear and Start inputs. Note that power and control inputs come in and go back out on 4-
pin connectors. The idea is that this will make construction of multi-track setups simpler.
Since the power connection provides 12 volts the Clear and Start signals are also 12 volts. A
two-resistor divider brings the signal voltage down to about 3.8 volts; this is well above the
TTL switching threshold of 1.4 volts for the SX. Note, too, that we’re using the SX
comparator input to detect finish. By using the comparator we can adjust the input set-point
(with R16) and accommodate a wide variety of ambient lighting conditions.

From the firmware standpoint, the two most critical elements of the program are the event
timing and display multiplexing – this is where an interrupt will come in handy. How about if
we interrupt the program every millisecond to update the timer and the display – that’s easy,
right? Yes, it absolutely is.

Periodic interrupts in the SX are controlled by the OPTION register, and when using
assembly or SX/B versions prior to 1.51 we would have to set this register manually. This is
not a huge hassle, but if we decided to change the clock frequency or interrupt rate we’d have
to do it again. Well, not any more. Since we want to interrupt the program every millisecond
– or 1000 times per second – we simply tell the SX/B compiler that’s what we want to do:

 INTERRUPT 1000

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

Yes, that’s it. As of SX/B version 1.51 the compiler will calculate proper value for the
OPTION register and will put it into the startup section. If you want to see this, press Ctrl-L
to see the list file, and then scroll down to the label RESET __PROGSTART; at the end of
this section you’ll see the OPTION register setting. If you change the FREQ value or
interrupt rate you can check back to see that the OPTION register value has in fact changed.

Okay, now let’s write the code that runs in the interrupt. Before we do that, though, I want to
remind you that in SX/B we must define subroutines and functions before they’re called. This
creates a bit of a problem if we want to call a subroutine from the interrupt section as the
interrupt entry must be the first thing in the program. The solution is actually quite simple:
we move the actual code to another location that comes after the subroutine and function
declarations. Getting to it is as simple as GOTO. So, the interrupt section of the program
ultimately looks like this:

 INTERRUPT 1000
 GOTO INT_HANDLER

Now it’s just a matter of putting the code that runs in the interrupt at a label called
INT_HANDLER. In case you’re wondering, this section does need to use RETURNINT
instead of RETURN, this is necessary to make sure the RTCC value is reloaded properly and
interrupts re-enabled. Let’s have a look at the interrupt handler:

INT_HANDLER:
 IF ops <> M_RUN THEN Next_Digit

Update_Clock:
 INC ms
 IF ms = 10 THEN
 ms = 0
 INC hs
 IF hs = 10 THEN
 hs = 0
 INC ts
 IF ts = 10 THEN
 ts = 0
 INC sec01
 IF sec01 = 10 THEN
 sec01 = 0
 INC sec10
 IF sec10 = 6 THEN
 ops = M_STOP
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 ENDIF

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

Next_Digit:
 INC digPntr
 IF digPntr = NumDigits THEN
 digPntr = 0
 ENDIF

Update_Segs:
 Segments = %00000000
 READ Dig_Map + digPntr, DigCtrl
 Segments = display(digPntr)

Check_Finish:
 IF AtFinish = Yes THEN
 ops = M_STOP
 ENDIF

 RETURNINT

Yes, it looks a little long, but as you’ll soon see, this section of code does most of the work for
the race timer. In practice the timer has three modes: 0) stopped and clear, 1) running, and 2)
stopped. The current mode is held in the variable called ops (mode and status are SX
keywords, so they can’t be used). If the timer is not supposed to be running then we skip past
its update and move to the next digit of the multiplexed display.

The display update routine points to the next digit (right to left) and then checks to if we need
to wrap back to digit zero. Then the segments (anodes) are cleared before reading the current
digit pattern from the display array. Clearing the segments before writing a new value to
them creates a crisper display to my eye, but you may want to experiment to this. The
cathode control value for the current digit is read from a DATA table. While we could have
generated the proper active-low cathode control value with code, using a table approach just
seemed more elegant.

With the display updated the last thing the interrupt section does is check to see if the finish-
line opto-transistor is blocked. If it is, the mode will be set to M_STOP and if the clock was
running it will halt at that point, allowing us to view the duration of the race until the Clear
button is pressed.

Let’s back up – we haven’t talked about updating the clock when it’s supposed to be running.
I used to work for a guy who told me that there are no compromises in product development,
but there are choices to be made. Case in point: we could store the timer milliseconds as a
word and the timer seconds as a byte, but then we’d have to use division to extract the
individual digit values for each position and, as you know, division can be computationally
heavy. So, I chose to use discrete variables for each clock digit; this means using five bytes

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

for the timer instead of three, but I think the benefits far outweigh the use of two additional
byte variables. By using this approach we’re able to update the display segments much more
easily (we’ll see that in just a bit) and if we chose to modify the program to send the digits out
serially to a terminal, we’d already have the individual digit values in place – again, no
division required.

Updating the clock in the interrupt handler is easy; we start with the milliseconds digit, ms. It
gets incremented and when it reaches 10 we reset it to zero and increment the hundredths
digit, hs. You can see that this process ripples through each of the five variables, the
difference being that we don’t clear the tens digit when it reach its limit, we simply stop the
clock at one minute (60 seconds). The choice of using individual variables to the timer digits
does make the code a little longer in this section, but if you look at the assembly output you’ll
see that there is nearly a 1-for-1 ratio of SX/B-to-assembly so the clock update process is
happening pretty quickly.

Now that we have a timer that can updated and display its value, we need to build the control
code for starting, stopping, and clearing it, and we’ll also need a routine to convert the timer
digit values to segment patterns for the LED display. Let’s get the program started:

Start:
 TRIS_B = %00000111
 PLP_A = %00000011

 COMPARE 1, __PARAM1

There’s just a couple things going on here – we set the cathode control pins to outputs and
pull-up the unused pins on RA. Next, we start the comparator in mode 1. This mode
activates the comparator with the result bit output on RB.0. An interesting note here is that
we do not need to make RB.0 an output for this pin to operate the LED connected to it; the
comparator output bit is connected directly to the pin. The program will monitor the state of
RB.0 to determine if the opto-transistor is blocked; when it is the clock will be stopped.

Note, too, that we don’t care about the initial output of the COMPARE instruction so we can
use one of the internal variables to receive the result. Since the comparator will continue to
run and put its result on RB.0 until disabled, we only need to run this instruction one time.

Finally, some may be wondering why we didn’t set the TRIS_C register for the segment pins
(RC). Well, the PIN definition takes care of that for us when we use the optional OUTPUT
directive like this:

Segments PIN RC OUTPUT

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

We couldn’t do this on RB because we have a mixed I/O structure.

And now we get to the main program loop – which really doesn’t have a lot to do.

Main:
 DO
 UPDATE_DISPLAY
 IF Go = Yes THEN
 IF ops = M_CLEAR THEN
 ops = M_RUN
 ENDIF
 ENDIF
 IF Clear = Yes THEN
 IF ops = M_STOP THEN
 PUT @ms, 0, 0, 0, 0, 0
 ops = M_CLEAR
 ENDIF
 ENDIF
 LOOP

The first thing that happens a is call UPDATE_DISPLAY to convert the timer digit values to
segment patterns for the LEDs. Even though we only call this once, I still think it’s a good
idea to encapsulate into a subroutine so that the program can be somewhat modular. Let’s
have a look at UPDATE_DISPLAY.

UPDATE_DISPLAY:
 READ Seg_Map + ms, display(0)
 READ Seg_Map + hs, display(1)
 READ Seg_Map + ts, display(2)
 READ DP_Map + sec01, display(3)
 IF sec10 = 0 THEN
 display(4) = Blank
 ELSE
 READ Seg_Map + sec10, display(4)
 ENDIF
 RETURN

As you can see, this is actually quite simple. READ is used to transfer segment maps from a
DATA table into each element of the display array. Since we know where the decimal point
is going to be simply hard code that into the program, in this case it will follow the ones digit,
and we’ll use a separate table with digit patterns plus decimal point – this saves us the step of
adding the decimal point bit later. If you decide to modify the timer to have a variable-
position decimal point, you could always do something like this:

UPDATE_DISPLAY:

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

 IF DPDigit = 0 THEN
 READ DP_Map + ms, display(0)
 ELSE
 READ Seg_Map + ms, display(0)
 ENDIF
 . . .

The one slightly-fancy thing we’ll here do is blank the leading zero in the tens digit position,
it just makes the output more professional looking in my opinion. From a code standpoint it’s
a simple matter of clearing the segments when the tens digit is zero, or reading the new
segment pattern when it isn’t.

To get the timer started it needs to be in mode zero (defined as M_CLEAR). When we get a
high input on RA.1 when in this mode the timer is started by updating the ops variable to
M_RUN (1). Remember, the interrupt is always running (1000 times each second) so as soon
we update ops the display will start changing. Once the car crosses over the finish line and
blocks the opto-transistor (which causes the comparator output to go high) the timer will be
stopped by changing its mode to M_STOP (2). In this mode we can monitor the Clear input
on RA.0 to reset everything.

One of the little-used yet convenient keywords in SX/B is PUT. This command takes a RAM
address and a list of one or more values. The first value is written to the address. If there are
more values, the address is incremented and subsequent values written. This makes it really
easy to move a set of values into a section of contiguous RAM that is not part of an array.

Note that we used the @ (address of) indicator with the ms variable after PUT. We have to do
this because PUT is expecting an address as the first parameter. If, however, we use PUT
with an array we don’t need the @ indicator. The reason for this is that arrays are always
treated [internally] as address pointers and offsets.

Putting It Together
Last month I used point-to-point wiring on the Menorah board because most of the hard work
was done by Parallax with the Super Carrier. And while this project could be wired point-to-
point, I certainly don’t have the patience to do it. Enter ExpressPCB. Since I don’t create a
lot of printed circuit boards I find the ease-of-use and ordering via ExpressPCB.com to be
right up my alley. I particularly like that the companion program, ExpressSCH (schematic
capture), can be linked to the board file to assist in making connections – this was especially
useful for the 7-segment displays.

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

I’ll never be accused of being a PCB layout expert, so I’m not going to spend a great deal of
time here. What I want to share with you was my solution for dealing with the displays. I
started by selecting display modules that have rows of horizontal pins. Once I created a
custom component in ExpressPCB and dropped five of them onto the board, I found the
easiest way to get the segment signals to all was to lay down a horizontal buss of eight lines
on the top side (red) of the PCB. Each segment is connected to its respective buss lines from
the bottom side (green) of the board with a via. A via looks like a pad, but it’s smaller and its
purpose is to route a signal from one side of the board to the other. After the segments were
connected to the buss the segment resistors were connected. This was the only tricky part of
the board layout as traces pass between pads – no worries, though, there is plenty of room and
unless one is very clumsy with a soldering iron there is little possibility of solder bridges.
Figure 141.3 shows the timer layout using the standard Mini-Board form factor.

Figure 141.3: Timer PCB Layout

If you haven’t used ExpressSCH and ExpressPCB do give them a try – they’re free, and if
you can fit your project into their Mini-Board format (as we did here) you can get three PCBs
for $62 and have them back three business days after you place the order. One thing I want to
encourage you to do is learn to use ExpressSCH to create your schematics before moving on

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

to ExpressPCB to layout the board. I know, we’re all in a time crunch but believe me, putting
your project into ExpressSCH first will save you a lot of headaches. First, it will check all
your connections and warn you of possible problems. Second, you can connect ExpressPCB
to the ExpressSCH so that making connections on the board is much easier. You can see in
Figure 141.3 that the pads in blue are supposed to be connected – I promise that this feature
will save you lots of trouble and you’ll be happy you spent the extra time with ExpressSCH.

Construction was straightforward. Like most, I start with the low-profile components first
(resistors) and work my way up to the taller components. The connectors are soldered on the
back, and I didn’t actually put a connector into J3 (SX-Key/SX-Blitz); I simply used pads
with small holes to make holding the Key/Blitz (equipped with a male-male header) against
the board a little easier. Figures 141.4 and 141.5 show the front and back of my prototype
PCB.

Figure 141.4: Timer PCB Front

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

Figure 141.5: Timer PCB Back

Let’s Race!
To put this project to work in a Pinewood Derby race track you’ll need to mount an LED
source in the track at the finish line and the photo-transistor receiver above it (I used a
source/detector pair from RadioShack). In my experiments with the timer I found it works
best when the photo-transistor is shielded with a plastic tube. With everything in place and
powered, adjust R16 until the finish LED comes on, then back off until it goes off. Make sure
that the LED goes full off – if it looks a bit dim then the comparator threshold has been very

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

near the opto/10K junction voltage and the output is oscillating between on and off. Back
R16 off a bit more until the LED is full off.

Figure 141.6 shows a suggested master controller for single- or multi-track setups. There’s
not much too this so it could be wired point-to-point. Don’t leave out the diodes if you’re
going to control a start solenoid from the power source used for the timer(s). The diodes will
protect the power supply and control inputs to the timer(s) from any inductive kickback
produced by the solenoid.

Figure 141.6: Timer PCB Back

Okay, it’s time to get your Pinewood racers out and get racing. With one millisecond
resolution, you hardcore racers will have not trouble determining which car changes work and
which don’t.

Until next time, Happy Stamping.

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

Resources

Jon Williams
jwilliams@efx-tek.com

Parallax, Inc.
www.parallax.com

ExpressSCH/ExpressPCB
www.expresspcb.com

Pinewood Derby Timer Bill of Materials

Designator Value Source
C1 0.47 Mouser 80-C320C474M5U
C2 47 Mouser 647-UVR1C470MDD
C3-C5 0.1 Mouser 80-C315C104M5U5TA
D0-D4 7-segment, CC Mouser 859-LTS-5603AG
D6 Mouser 638-204HT
J1, J2 Mouser 571-6404544
J4 Mouser 571-6404542
Q1 RS 276-142
R1, R3, R5, R14 Mouser 291-10K-RC
R2, R4 4.7K Mouser 291-4.7K-RC
R6-R14 470 Mouser 299-470-RC
R16 100K Mouser 652-3352T-1-104LF
U1 5v, LDO Mouser 511-LF50CP
U2 SX28AC/DP Parallax SX28AC/DP-G
X4 Mouser 538-22-01-2027
XR1 20 MHz Parallax 250-02060

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

Source Code
' ===
'
' File...... TRACK_TIMER.SXB
' Purpose... Pinewood Derby Track Timer
' Author.... Jon Williams, EFX-TEK
' E-mail.... jwilliams@efx-tek.com
' Started...
' Updated... 17 NOV 2006
'
' ===

' ---
' Program Description
' ---
'
' Track timer for pinewood derby racing. The Clear and Go inputs can
' be connected to other devices so that all are under control from a
' single master race controller in a multi-track setup.

' ---
' Conditional Compilation Symbols
' ---

' ---
' Device Settings
' ---

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX
FREQ 20_000_000
ID "Derby1.0"

' ---
' IO Pins
' ---

Clear PIN RA.0
Go PIN RA.1

AtFinish PIN RB.0 ' comparitor output bit

DigCtrl PIN RB
Segments PIN RC OUTPUT

' ---
' Constants

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

' ---

Yes CON 1 ' for active-high inputs
No CON 0

M_CLEAR CON 0 ' clock clear and stopped
M_RUN CON 1 ' clock running
M_STOP CON 2 ' clock stopped

Blank CON %00000000 ' all segments off
DPoint CON %10000000 ' DP in bit7
DPDigit CON 3 ' DP after secs digit

NumDigits CON 5 ' for 5-digit display

' ---
' Variables
' ---

ops VAR Byte ' operational mode

ms VAR Byte ' milliseconds digit
hs VAR Byte ' hundredths digit
ts VAR Byte ' tenths digit
sec01 VAR Byte ' ones digit
sec10 VAR Byte ' tens digit

digPntr VAR Byte ' digit pointer
display VAR Byte(NumDigits) ' current display segments

' ---
 INTERRUPT 1000 ' run every millisecond
' ---

 GOTO INT_HANDLER

' ===
 PROGRAM Start
' ===

' ---
' Subroutine Declarations
' ---

UPDATE_DISPLAY SUB 0 ' convert digits to segments

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

' ---
' Program Code
' ---

Start:
 TRIS_B = %00000111 ' make dig ctrl pins outs
 PLP_A = %00000011 ' pull up unused pins

 COMPARE 1, __PARAM1 ' activate comparitor

Main:
 DO
 UPDATE_DISPLAY ' refresh segment array
 IF Go = Yes THEN ' go button pressed
 IF ops = M_CLEAR THEN ' were we cleared?
 ops = M_RUN ' yep, so we can run
 ENDIF
 ENDIF
 IF Clear = Yes THEN ' clear button pressed?
 IF ops = M_STOP THEN
 PUT @ms, 0, 0, 0, 0, 0
 ops = M_CLEAR ' clear the clock
 ENDIF
 ENDIF
 LOOP

' ---
' Subroutine Code
' ---

INT_HANDLER:
 IF ops <> M_RUN THEN Next_Digit ' skip update if stopped

Update_Clock:
 INC ms ' inc milliseconds digit
 IF ms = 10 THEN
 ms = 0
 INC hs ' inc hundredths digit
 IF hs = 10 THEN
 hs = 0
 INC ts ' inc tenths digit
 IF ts = 10 THEN
 ts = 0
 INC sec01 ' inc seconds digit
 IF sec01 = 10 THEN
 sec01 = 0
 INC sec10 ' inc tens digit
 IF sec10 = 6 THEN ' one minute maximum time
 ops = M_STOP ' stop the clock
 ENDIF

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

 ENDIF
 ENDIF
 ENDIF
 ENDIF

Next_Digit:
 INC digPntr ' point to next digit
 IF digPntr = NumDigits THEN ' check pointer
 digPntr = 0 ' wrap if needed
 ENDIF

Update_Segs:
 Segments = %00000000 ' blank segments
 READ Dig_Map + digPntr, DigCtrl ' update digit control
 Segments = display(digPntr) ' output new segments

Check_Finish:
 IF AtFinish = Yes THEN ' if car at finish line
 ops = M_STOP ' stop clock
 ENDIF

 RETURNINT

' ---

UPDATE_DISPLAY:
 READ Seg_Map + ms, display(0) ' update segment maps
 READ Seg_Map + hs, display(1)
 READ Seg_Map + ts, display(2)
 READ DP_Map + sec01, display(3)

 IF sec10 = 0 THEN
 display(4) = %00000000 ' blank leading zero
 ELSE
 READ Seg_Map + sec10, display(4)
 ENDIF

 RETURN

' ===
' User Data
' ===

Seg_Map: ' segments maps
' .gfedcba
 DATA %00111111 ' 0
 DATA %00000110 ' 1
 DATA %01011011 ' 2
 DATA %01001111 ' 3
 DATA %01100110 ' 4

Column #141: Ready...Set...Code!

The Nuts & Volts of BASIC Stamps 2007

 DATA %01101101 ' 5
 DATA %01111101 ' 6
 DATA %00000111 ' 7
 DATA %01111111 ' 8
 DATA %01100111 ' 9

DP_Map: ' segments maps with DP
' .gfedcba
 DATA %10111111 ' 0.
 DATA %10000110 ' 1.
 DATA %11011011 ' 2.
 DATA %11001111 ' 3.
 DATA %11100110 ' 4.
 DATA %11101101 ' 5.
 DATA %11111101 ' 6.
 DATA %10000111 ' 7.
 DATA %11111111 ' 8.
 DATA %11100111 ' 9.

Dig_Map: ' digit select map
 DATA %11110000
 DATA %11101000
 DATA %11011000
 DATA %10111000
 DATA %01111000

