
Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 189

Column #125, September 2005 by Jon Williams:

Control from Your Favorite Terminal

Well, it’s good to be home. Since the start of the EFX group my colleague, John Barrowman,
and I have been doing a lot of travel and participation in group events, many having to do
with Halloween and holiday decorating. It’s interesting what folks will ask for, some of it
odd, some of it quite straightforward. After the MIDI project we did with the SX28 a few
months ago I got a lot of mail asking how to use a terminal program and an SX for device
control. We can do that – and with some recent updates to the SX/B compiler it’s even easier
to do.

I have to admit that I’m having an absolute blast with the SX/B compiler. That may seem
silly, especially since I’m “on the inside” and actually part of the development team. Still,
I’m really having fun; SX/B is letting me build high-performance projects – both for work
(several Parallax EFX products, for example) and for play – with relative ease. And when
one needs to build lots of do-dads, the low cost of the SX controller line is certainly a big
help.

I feel like my greatest strength for the SX/B team is coming from the ranks of BASIC Stamp
users; like many of you, I’m just not patient enough to write full-blown assembly language
programs (and I have tremendous admiration for those that do). What I like about SX/B is
that I can get full-performance from the SX without having to go the assembly language

Column #125: Control from Your Favorite Terminal

Page 190 • The Nuts and Volts of BASIC Stamps (Volume 6)

route. I frequently send a note to our compiler engineer that says, “Hey, I’d like to do this…”
He’s a pretty accommodating guy and with input from me and other devoted users, SX/B
continues to grow.

The latest version of SX/B (as of this article) is 1.4, and it offers a couple of really nice new
features that we’ll exploit this month in our project. The first is the ability to allow a
subroutine to return a value to the caller without having to explicitly declare the destination
address in the call. We used to do this:

 RX_BYTE @char

Now we can do this:

 char = RX_BYTE

Why does this matter? Well, the latter version is easier to understand and we don’t have to
remember to add the pesky ‘@’ (address of) symbol. It actually simplifies the subroutine
code as well. Prior to version 1.3 (when return values were introduced) we would write the
RX_BYTE subroutine like this:

RX_BYTE:
 temp1 = __PARAM1
 SERIN SIn, Baud, temp2
 __RAM(temp1) = temp2
 RETURN temp1

As you can see, the subroutine is expecting an address to be passed as a parameter (we can tell
because the __RAM array expects an address). If we forgot to put the ‘@’ symbol in front of
the destination variable name the value received by the serial port would not go where it was
intended – this could be frustrating to track down.

Let’s see the same subroutine that returns a value:

RX_BYTE:
 SERIN SIn, Baud, temp1
 RETURN temp1

I think you’ll agree that the second version is easier and it even uses one less variable.

The other neat feature recently introduced in SX/B is string (address) handling. It’s a little
more involved, so let’s save that for our project.

Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 191

Cheap PC Control

There’s no denying that PCs are cheap – so much so that it’s no longer out of the question to
dedicate a PC to a control task. As I mentioned earlier, I got a lot of mail regarding the MIDI
project. While many were interested in it, not every body wanted to invest in MIDI control
software, especially when the control might be localized.

At about the same time I was getting that mail regarding the MIDI project my friend Rick was
showed me a new product he was developing for the gas industry. It is a very modular system
with components that are connected through a multi-drop RS-485 link. What was particularly
interesting is that Rick chose to use a text interface between the devices. By using text to
move data, Rick is able to monitor and control the system through a standard terminal
program. Since the data moving back and forth is relatively sparse, the downside of having to
convert to and from text is greatly outweighed by the simplicity of using a terminal program
as a monitor and debugging tool.

Figure 125.1 shows the schematic for this month’s project, which really doesn’t get much
simpler: an SX28 and a MAX232 level converter so we can connect to the PC. I haven’t done
anything with the outputs (RB and RC), as you’d have to decide what you’re actually going to
control before you connect to them. Start with LEDs to get the program working, and then
connect whatever happens to be appropriate. It might be a ULN2803 for driving relays or
solenoids, or an SSR (solid state relay) like the Crydom D2W203F-11 for controlling AC
circuits.

Column #125: Control from Your Favorite Terminal

Page 192 • The Nuts and Volts of BASIC Stamps (Volume 6)

Figure 125.1 PC_Port 16 Schematic

Our goal this month is to create an interface between a generic terminal program and the SX –
Figure 125.2 shows an example session using HyperTerminal. Once the [derivative] project
is working through a terminal, it’s a very simple matter to control the device from our favorite
PC development tool: VB, C, Java, Python, Perl – you name it; the interface is just text.

Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 193

Figure 125.2 SX/B HyperTerminal

As I mentioned a second ago, SX/B 1.4 makes string handling easier for the programmer. We
still have to write a subroutine to transmit the string to an external device, but the setup for
sending a string is now a single-step process. At the top of our control program we’ll define a
bunch of z-strings (zero terminated strings) – in DATA statements much in the way we do it
in the BASIC Stamp:

Prompt:
 DATA CR, LF, ">> ", 0

Version:
 DATA CR, LF, " PC_PORT16 Version 1.0", CR, LF, 0

Pad:
 DATA CR, LF, " ", 0

CRLF:
 DATA CR, LF, 0

PortStatus:
 DATA CR, LF, " Ports = ", 0

Column #125: Control from Your Favorite Terminal

Page 194 • The Nuts and Volts of BASIC Stamps (Volume 6)

Note that the strings also contain constant values for carriage return (CR) and line feed (LF)
that are also defined in the program (i.e., they are not built in to SX/B).

It is our responsibility to write the subroutine that handles the string because SX/B has no idea
where it’s going to go. In this program, we’ll send it to the PC using SEROUT. First, of
course, we need to define the subroutine for the compiler:

TX_STR SUB 2

As you can see, a subroutine that handles a string requires two bytes: the base address and
character offset (these will be handled by the compiler when we make the call to TX_STR).
The reason for this is that the SX’s [native] IREAD instruction will be used to pull a character
and it requires a 12-bit address. Here’s the code for TX_STR:

TX_STR:
 temp3 = __PARAM1
 temp4 = __PARAM2
 DO
 READ temp3 + temp4, temp5
 IF temp5 = 0 THEN EXIT
 TX_BYTE temp5
 INC temp4
 temp3 = temp3 + Z
 LOOP
 RETURN

We start by saving the base address and character offset in variables temp1 and temp2. Then
we enter a loop that uses READ to pull a character and, if the character value is not zero, we
send it to the PC with TX_BYTE. By using variables for the base and offset, both can be
updated allowing the string to cross SX page boundaries. This makes our life simple, and the
1.4 compiler even lets us do this:

 TX_STR "Hello, World!"

Yes, we can embed a string right into the program code. A note of caution, however: the
string will be embedded in place (the terminating zero is added by the compiler) so if we’re
going to use the same string more than once then using this style is not the best choice. Just to
clarify, when a string is going to be used in more than one place in the program then the best
thing to do is put that string into a DATA statement.

As we just saw, TX_STR calls TX_BYTE to send the character to the PC at the specified
baud rate (115.2 kBaud in this program). Let’s have a look at that code:

Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 195

TX_BYTE:
 temp1 = __PARAM1
 IF __PARAMCNT = 1 THEN
 temp2 = 1
 ELSE
 temp2 = __PARAM2
 IF temp2 = 0 THEN
 temp2 = 1
 ENDIF
 ENDIF
 DO WHILE temp2 > 0
 SEROUT SOut, Baud, temp1
 DEC temp2
 LOOP
 RETURN

This routine requires at least one parameter, and can take two. The second parameter (if
provided) will be the number of times to transmit the character. So if we want to send a string
of 20 asterisks, we can do this:

 TX_BYTE "*", 20

Working our way through TX_BYTE we start by saving the character to transmit in temp1.
Then we check the number of parameters sent by looking at __PARAMCNT. This is an
internal variable and set by the compiler based on the syntax we use (one parameter or two).
If only one parameter was sent then temp2 will be set to one, otherwise we set it to the second
parameter. Since I don’t think it makes sense to send a zero in the count parameter, the
subroutine traps this condition and changes it to one.

The actual transmission of the character is done in a DO-LOOP construct that uses the count
(temp2) parameter for control. Each time through the loop the character gets sent and the
count variable is decremented. When the count reaches zero, the loop terminates and the
subroutine is finished.

Okay, then, let’s get into the program. After initialization, the program sends a prompt to the
terminal (or control application) and then waits for input. In this case, the input will be a
command character followed by a carriage return.

Column #125: Control from Your Favorite Terminal

Page 196 • The Nuts and Volts of BASIC Stamps (Volume 6)

Main:
 TX_STR Prompt
 cmd = RX_BYTE
 IF cmd = CR THEN
 TX_STR CRLF
 GOTO Main
 ENDIF
 char = RX_BYTE
 IF char <> CR THEN
 TX_STR CRLF
 GOTO Main
 ENDIF

The reason I decided to follow the command character with a forced CR is that it allows me
an “Oops!” condition in the event I press the wrong command key (some keys are expecting
data that will change the SX outputs). If I press the wrong key then all I have to do is hit Esc
or any other key (except CR) to get back to the prompt without consequence.

The program uses RX_BYTE to get a byte from the terminal. One of the things that this
program does is convert letters to uppercase – this simplifies our command letter processing.

RX_BYTE:
 SERIN SIn, Baud, temp1
 IF temp1 >= "a" THEN
 IF temp1 <= "z" THEN
 temp1 = temp1 - $20
 ENDIF
 ENDIF
 RETURN temp1

As you can see, this subroutine is quite simple; we wait for a character then examine it to see
if it falls between “a” and “z” (inclusive). If it does, then we subtract $20 from the character
(ASCII code) to convert it to uppercase before returning it to the caller.

With a command character in hand we can compare it against a know list of commands and
jump to the code that handles that. In the BASIC Stamp we frequently use LOOKDOWN and
BRANCH to handle this sort of processing, but in the SX I prefer to use straightforward
IF-THEN statements; in SX/B – because the way code is compiled – it seems to result in more
efficient assembly output (have a look at the compiled source using Ctrl-L to see what I
mean).

Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 197

 IF cmd = "V" THEN Show_Version
 IF cmd = "G" THEN Get_Ports
 IF cmd = "S" THEN Set_Ports
 IF cmd = "H" THEN Set_HiPort
 IF cmd = "L" THEN Set_LoPort
 IF cmd = "P" THEN Set_OnePort
 IF cmd = "R" THEN Reset_Ports

As you can see, it would be quite easy for us to add new commands to the list. Let’s have a
look at how each command is handled, shall we?

The first command is “V” for Version. This feature may be important if we develop a piece
of control software that can work with multiple control devices – getting the version (hence
available features) from the connected device will prevent possible incompatibility issues.

Show_Version:
 TX_STR Version
 GOTO Main

Boy, that was tough, wasn’t it? Since we’ve already covered sending strings there’s really
nothing else to cover.

Next is “G” for Get Ports Status. This command will return the status of the 16 output ports
in this form:

 Status = 00000000 00000000

Note that what follows “Status =” are the actual states of the pins, where “1” is on and “0” is
off, and the display is MSB to LSB. What we need to do here is create a subroutine that will
transmit a value as a binary string, much the way the PBASIC BIN8 modifier does.

First, the Get_Ports code:

Get_Ports:
 TX_STR PortStatus
 TX_BIN8 PortHi
 TX_BYTE " "
 TX_BIN8 PortLo
 TX_STR CRLF
 GOTO Main

Column #125: Control from Your Favorite Terminal

Page 198 • The Nuts and Volts of BASIC Stamps (Volume 6)

And now the TX_BIN8 subroutine that is used by Get_Ports:

TX_BIN8:
 temp3 = __PARAM1
 FOR temp4 = 1 TO 8
 IF temp3.7 = 1 THEN
 TX_BYTE "1"
 ELSE
 TX_BYTE "0"
 ENDIF
 temp3 = temp3 << 1
 NEXT
 RETURN

The TX_BIN8 subroutine, of course, expects a value to be sent; this will be saved in temp3.
Using a FOR-NEXT loop, the bits are examined from MSB to LSB. If the bit is set then we
use TX_BYTE to send “1” otherwise we send “0.” Since temp3 is a work variable and
doesn’t need to be preserved, the code is simplified by looking only at the MSB. In order to
examine all of the bits, temp3 is shifted left each time through the loop. This moves the next
bit into the MSB.

Okay, now that we can see the outputs, how do we change them? The program supports three
different methods of updating the outputs: all 16 at once, the high and low groups, or
individual port bits. Let’s start with all ports using the “S” (Set All Ports) command:

Set_Ports:
 TX_STR Pad
 PortHi = RX_BIN8
 TX_BYTE " "
 PortLo = RX_BIN8
 TX_STR CRLF
 GOTO Main

For the Set_Ports code we need a routine that is the complement of TX_BIN8 – in this case
it’s RX_BIN8. This will allow use to receive a value expressed in binary form, and is used to
accept values for the high port (RC) and low port (RB) separately. A space is transmitted
after the receipt of the PortHi value to indicate a new input (for PortLo).

RX_BIN8:
 temp3 = 0
 FOR temp4 = 1 TO 8
 temp5 = RX_BYTE
 IF temp5 >= "0" THEN

Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 199

 IF temp5 <= "1" THEN
 temp3 = temp3 << 1
 IF temp5 = "1" THEN
 INC temp3
 ENDIF
 ELSE
 EXIT
 ENDIF
 ELSE
 EXIT
 ENDIF
 NEXT
 RETURN temp3

We start by clearing temp3 that will ultimately hold the return value. Then we setup a
FOR-NEXT loop to get eight bits. A character is retrieved from the serial port and checked to
see if it’s a valid binary digit: “0” or “1.” If it is, then the return value is shifted left and the
new bit value is added to the return variable. Shifting left means that the routine is expecting
the value to be transmitted MSB first.

The FOR-NEXT loop takes advantage of EXIT to terminate early if a non-binary character is
sent before the end of the loop. This allows us to enter the minimum number of bits required
to express the value. If, for example, we enter “1111” and then press space, the value 15 will
be returned to the caller.

There are two additional commands, “H” and “L,” that allow the user to set the high and low
ports independently. Those routines are simply subsets of the Get_Ports code.

I think the trickiest aspect of this program is the code for “P” (Set Individual Port) that allows
the user to specify a port number (1 to 16) and its condition (0 for off, 1 for on). For this code
we’ll need a routine that will accept a decimal value: RX_DEC2.

RX_DEC2:
 temp3 = 0
 FOR temp4 = 1 TO 2
 temp5 = RX_BYTE
 IF temp5 >= "0" THEN
 IF temp5 <= "9" THEN
 temp3 = temp3 * 10
 temp5 = temp5 - "0"
 temp3 = temp3 + temp5
 ELSE
 EXIT

Column #125: Control from Your Favorite Terminal

Page 200 • The Nuts and Volts of BASIC Stamps (Volume 6)

 ENDIF
 ELSE
 EXIT
 ENDIF
 NEXT
 RETURN temp3

While it may not seem so at first, this code is identical to the RX_BIN8 subroutine. The
difference, of course, is in the decimal base. To “shift” digits in this code we need to multiply
by ten, and then add the new value (after it is converted from its ASCII code) to the result.
Since we’re dealing in decimal and don’t want to overrun the limitations of a byte, the
subroutine allows a maximum of two digits.

And now it gets a little hairy … but just a little.

Set_OnePort:
 TX_STR Pad
 idx = RX_DEC2
 TX_BYTE " "
 cmd = RX_BYTE
 IF idx >= 1 THEN
 IF idx <= 8 THEN
 DEC idx
 temp1 = 1 << idx
 IF cmd = "1" THEN
 PortLo = PortLo | temp1
 ENDIF
 IF cmd = "0" THEN
 temp1 = ~temp1
 PortLo = PortLo & temp1
 ENDIF
 ENDIF
 ENDIF
 IF idx >= 9 THEN
 IF idx <= 16 THEN
 idx = idx - 9
 temp1 = 1 << idx
 IF cmd = "1" THEN
 PortHi = PortHi | temp1
 ENDIF
 IF cmd = "0" THEN
 temp1 = ~temp1
 PortHi = PortHi & temp1
 ENDIF

Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 201

 ENDIF
 ENDIF
 TX_STR CRLF
 GOTO Main

This code is not as bad as it looks at first blush. What we have to remember is that SX/B is
very close to assembly language (many instructions are 1-for-1) so it gets a bit verbose –
certainly more than PBASIC.

The code waits for the port number, prints a space pad, and then waits for a state value. The
port value passed is compared against valid ranges: 1-to-8 for the low port, and 9-to-16 for the
high port. If the value sent to the program falls outside of either range this section terminates
and goes back to Main.

For analysis, let’s assume that the user entered a port value of “4” and a state value of “1”; the
user wants to turn output 4 on. First we zero-align the port value based on the group that will
be updated, and then a mask is created from this value. In this case, the port 4 value gets
converted to a pin-mask of %00001000. If the state is “1” then the mask is ORed with the
appropriate SX port to enable the specified bit. If the state is “0” then the mask is inverted
and ANDed with the SX port to clear the selected port bit.

Finally, we have the “R” command to reset (clear) the outputs.

Reset_Ports:
 PortHi = %00000000
 PortLo = %00000000
 TX_STR CRLF
 GOTO Main

Nothing magic here, simply clear the ports and go back to the top.

Okay, I think that about does it. I hope that you learned something from this project and that
you can use it as the starting point for some neat PC-based control projects. And, by the way,
if you need more ports remember that the SX48 and SX52 are available – and Parallax is
selling fully-populated SX48 and SX52 proto boards for ten bucks! With this framework
code and all those IO pins, there’s no limit to what you could do.

Before I close, let me explain something. You may have noticed that I always use the
variables temp1 through temp5 in my SX/B subroutines. There is a method to this apparent
madness. What we haven’t really discussed yet is that SX/B allows external files to be
included in a listing, so by being consistent with subroutine variable names it’s easier to

Column #125: Control from Your Favorite Terminal

Page 202 • The Nuts and Volts of BASIC Stamps (Volume 6)

bundle common routines like RX_BYTE and TX_BYTE in a separate file. Then we can do
this:

 LOAD RXTX.SXB

Cool, huh? Yeah, I think so too.

Have fun with the SX and until next time, Happy Stamping!

Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 203

' ===
'
' File...... PC_PORT16.SXB
' Purpose... Provides 16 outputs from PC serial port
' Author.... Jon Williams, Parallax
' E-mail.... jwilliams@parallax.com
' Started...
' Updated... 31 AUG 2005
'
' ===

' ---
' Program Description
' ---
'
' Allows the programmer to turn a serial port into 16 digital outputs.
' Control is through a simple text protocol that allows control from a
' terminal or any other program that can send commands.
'
' Note: Requires SX/B 1.41 or higher for proper string handling.

' ---
' Device Settings
' ---

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX
FREQ 4_000_000

' ---
' IO Pins
' ---

SIn VAR RA.0 ' input from master
SOut VAR RA.1 ' output to master
PortLo VAR RB
PortHi VAR RC

' ---
' Constants
' ---

Baud CON "T9600" ' use with MAX232/USB2SER

CR CON 13
LF CON 10

Column #125: Control from Your Favorite Terminal

Page 204 • The Nuts and Volts of BASIC Stamps (Volume 6)

' ---
' Variables
' ---

cmd VAR Byte ' command input
char VAR Byte ' character in/out
idx VAR Byte ' loop control

temp1 VAR Byte ' subroutine work vars
temp2 VAR Byte
temp3 VAR Byte
temp4 VAR Byte
temp5 VAR Byte

' ===
 PROGRAM Start
' ===

Prompt:
 DATA CR, LF, ">> ", 0

Version:
 DATA CR, LF, " PC_PORT16 Version 1.0", CR, LF, 0

Pad:
 DATA CR, LF, " ", 0

CRLF:
 DATA CR, LF, 0

PortStatus:
 DATA CR, LF, " Ports = ", 0

' ---
' Subroutine Declarations
' ---

WAIT_MS SUB 1, 2 ' delay in milliseconds
RX_BYTE SUB ' rx a byte
RX_BIN8 SUB ' rx byte in BIN8 format
RX_DEC2 SUB ' rx byte in DEC2 format
TX_BYTE SUB 1, 2 ' tx a byte { x count }
TX_STR SUB 2 ' tx a string
TX_BIN8 SUB 1 ' tx byte in BIN8 format

' ---
' Program Code
' ---

Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 205

Start:
 PLP_A = %0011 ' pull-up unused pins
 TRIS_B = %00000000 ' make outputs
 TRIS_C = %00000000

 SOut = 1
 WAIT_MS 250

Main:
 TX_STR Prompt ' send prompt
 cmd = RX_BYTE ' get command
 IF cmd = CR THEN ' clear early CR
 TX_STR CRLF
 GOTO Main
 ENDIF
 char = RX_BYTE
 IF char <> CR THEN ' wait for CR
 TX_STR CRLF
 GOTO Main
 ENDIF

 IF cmd = "V" THEN Show_Version ' process command
 IF cmd = "G" THEN Get_Ports
 IF cmd = "S" THEN Set_Ports
 IF cmd = "H" THEN Set_HiPort
 IF cmd = "L" THEN Set_LoPort
 IF cmd = "P" THEN Set_OnePort
 IF cmd = "R" THEN Reset_Ports

 TX_STR CRLF ' force whitespace
 GOTO Main

Show_Version:
 TX_STR Version ' send the version
 GOTO Main

Get_Ports:
 TX_STR PortStatus ' send header
 TX_BIN8 PortHi ' send port status
 TX_BYTE " " ' separator
 TX_BIN8 PortLo
 TX_STR CRLF
 GOTO Main

Set_Ports:
 TX_STR Pad ' send bad
 PortHi = RX_BIN8 ' get high bits
 TX_BYTE " "
 PortLo = RX_BIN8 ' get low bits
 TX_STR CRLF

Column #125: Control from Your Favorite Terminal

Page 206 • The Nuts and Volts of BASIC Stamps (Volume 6)

 GOTO Main

Set_HiPort:
 TX_STR Pad
 PortHi = RX_BIN8 ' get high bits
 TX_STR CRLF
 GOTO Main

Set_LoPort:
 TX_STR Pad
 PortLo = RX_BIN8 ' get low bits
 TX_STR CRLF
 GOTO Main

Set_OnePort:
 TX_STR Pad
 idx = RX_DEC2 ' get port value, 1 - 16
 TX_BYTE " "
 cmd = RX_BYTE ' get command, "0".."1"
 IF idx >= 1 THEN
 IF idx <= 8 THEN
 DEC idx ' zero align
 temp1 = 1 << idx ' make mask
 IF cmd = "1" THEN
 PortLo = PortLo | temp1 ' turn on port bit
 ENDIF
 IF cmd = "0" THEN
 temp1 = ~temp1 ' invert mask
 PortLo = PortLo & temp1
 ENDIF
 ENDIF
 ENDIF
 IF idx >= 9 THEN
 IF idx <= 16 THEN
 idx = idx - 9 ' zero align
 temp1 = 1 << idx ' make mask
 IF cmd = "1" THEN
 PortHi = PortHi | temp1 ' turn on port bit
 ENDIF
 IF cmd = "0" THEN
 temp1 = ~temp1 ' invert mask
 PortHi = PortHi & temp1
 ENDIF
 ENDIF
 ENDIF
 TX_STR CRLF
 GOTO Main

Reset_Ports:
 PortHi = %00000000 ' clear high port
 PortLo = %00000000 ' clear low port

Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 207

 TX_STR CRLF
 GOTO Main

' ---
' Subroutine Code
' ---

' Use: WAIT_MS baseDelay {, multiplier }
' -- delays in milliseconds: baseDelay { x multiplier }
' -- multiplier is optional

WAIT_MS:
 temp1 = __PARAM1 ' capture base delay
 IF __PARAMCNT = 2 THEN ' multiplier?
 temp2 = __PARAM2 ' yes, capture
 ELSE
 temp2 = 1 ' no, set to 1
 ENDIF
 IF temp1 > 0 THEN
 IF temp1 > 0 THEN
 PAUSE temp1 * temp2
 ENDIF
 ENDIF
 RETURN

' ---

' Use: theVar = RX_BYTE
' -- receives one byte on "SIn" at "Baud"
' -- converts "a".."z" to "A".."Z" (makes uppercase)

RX_BYTE:
 SERIN SIn, Baud, temp1 ' rx the byte
 IF temp1 >= "a" THEN ' check for lowercase
 IF temp1 <= "z" THEN
 temp1 = temp1 - $20 ' make uppercase if needed
 ENDIF
 ENDIF
 RETURN temp1

' ---

' Use: theVar = RX_BIN8
' -- receives number sent as text in binary format
' -- up to eight digits
' -- non "0" or "1" digit terminates input

RX_BIN8:
 temp3 = 0 ' clear return value
 FOR temp4 = 1 TO 8 ' loop through 8 bits

Column #125: Control from Your Favorite Terminal

Page 208 • The Nuts and Volts of BASIC Stamps (Volume 6)

 temp5 = RX_BYTE ' get character
 IF temp5 >= "0" THEN ' validate
 IF temp5 <= "1" THEN '
 temp3 = temp3 << 1 ' shift bits
 IF temp5 = "1" THEN
 INC temp3 ' add "1" bit
 ENDIF
 ELSE
 EXIT
 ENDIF
 ELSE
 EXIT ' exit if not "0" or "1"
 ENDIF
 NEXT
 RETURN temp3

' ---

' Use: theVar = RX_DEC2
' -- receives number sent as text in decimal format
' -- up to two digits
' -- non "0".."9" digit terminates input

RX_DEC2:
 temp3 = 0 ' clear return value
 FOR temp4 = 1 TO 2 ' loop through 2 digits
 temp5 = RX_BYTE ' get character
 IF temp5 >= "0" THEN ' validate
 IF temp5 <= "9" THEN
 temp3 = temp3 * 10 ' shift digits
 temp5 = temp5 - "0" ' convert ASCII to value
 temp3 = temp3 + temp5 ' add to return var
 ELSE
 EXIT
 ENDIF
 ELSE
 EXIT
 ENDIF
 NEXT
 RETURN temp3

' ---

' Use: TX_BYTE theByte {, count}
' -- transmit "theByte" at "Baud" on "SOut"
' -- optional "count" may be specified (must be > 0)

TX_BYTE:
 temp1 = __PARAM1 ' save byte
 IF __PARAMCNT = 1 THEN ' if no count
 temp2 = 1 ' set to 1

Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 209

 ELSE ' otherwise
 temp2 = __PARAM2 ' get count
 IF temp2 = 0 THEN ' do not allow 0
 temp2 = 1
 ENDIF
 ENDIF
 DO WHILE temp2 > 0 ' loop through count
 SEROUT SOut, Baud, temp1 ' send the byte
 DEC temp2 ' decrement count
 LOOP
 RETURN

' ---

' Use: TX_STR [string | label]
' -- "string" is an embedded string constant
' -- "label" is DATA statement label for stored z-String

TX_STR:
 temp3 = __PARAM1 ' get string offset
 temp4 = __PARAM2 ' get string base

 DO
 READ temp4 + temp3, temp5 ' read a character
 IF temp5 = 0 THEN EXIT ' if 0, string complete
 TX_BYTE temp5 ' send character
 INC temp3 ' point to next character
 temp4 = temp4 + Z ' update base on overflow
 LOOP
 RETURN

' ---

' Use: TX_BIN8 theByte
' -- transmits value of "theByte" in BIN8 format

TX_BIN8:
 temp3 = __PARAM1 ' save the value
 FOR temp4 = 1 TO 8 ' loop through eight bits
 IF temp3.7 = 1 THEN ' if MSB is set
 TX_BYTE "1" ' send "1"
 ELSE ' else
 TX_BYTE "0" ' send "0"
 ENDIF
 temp3 = temp3 << 1 ' shift next bit to MSB
 NEXT
 RETURN

Column #125: Control from Your Favorite Terminal

Page 210 • The Nuts and Volts of BASIC Stamps (Volume 6)

' ===
'
' File...... PC_PORT16_SX52.SXB
' Purpose... Provides 16 outputs from PC serial port
' Author.... Jon Williams, Parallax
' E-mail.... jwilliams@parallax.com
' Started...
' Updated... 16 OCT 2005
'
' ===

' ---
' Program Description
' ---
'
' Allows the programmer to turn a serial port into 16 digital outputs.
' Control is through a simple text protocol that allows control from a
' terminal or any other program that can send commands.
'
' Note: Requires SX/B 1.41 or higher for proper string handling.

' ---
' Device Settings
' ---

DEVICE SX52, OSCXT2
FREQ 4_000_000

' ---
' IO Pins
' ---

SIn VAR RA.0 ' input from master
SOut VAR RA.1 ' output to master
PortLo VAR RB
PortHi VAR RC

' ---
' Constants
' ---

Baud CON "T9600" ' use with MAX232/USB2SER

CR CON 13
LF CON 10

Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 211

' ---
' Variables
' ---

cmd VAR Byte ' command input
char VAR Byte ' character in/out
idx VAR Byte ' loop control

temp1 VAR Byte ' subroutine work vars
temp2 VAR Byte
temp3 VAR Byte
temp4 VAR Byte
temp5 VAR Byte

' ===
 PROGRAM Start
' ===

Prompt:
 DATA CR, LF, ">> ", 0

Version:
 DATA CR, LF, " PC_PORT16 Version 1.0", CR, LF, 0

Pad:
 DATA CR, LF, " ", 0

CRLF:
 DATA CR, LF, 0

PortStatus:
 DATA CR, LF, " Ports = ", 0

' ---
' Subroutine Declarations
' ---

WAIT_MS SUB 1, 2 ' delay in milliseconds
RX_BYTE SUB ' rx a byte
RX_BIN8 SUB ' rx byte in BIN8 format
RX_DEC2 SUB ' rx byte in DEC2 format
TX_BYTE SUB 1, 2 ' tx a byte { x count }
TX_STR SUB 2 ' tx a string
TX_BIN8 SUB 1 ' tx byte in BIN8 format

' ---
' Program Code
' ---

Column #125: Control from Your Favorite Terminal

Page 212 • The Nuts and Volts of BASIC Stamps (Volume 6)

Start:
 PLP_A = %0011 ' pull-up unused pins
 PLP_D = %00000000
 PLP_E = %00000000

 SOut = 1
 TRIS_A = %11111101
 TRIS_B = %00000000 ' make outputs
 TRIS_C = %00000000

 WAIT_MS 250

Main:
 TX_BYTE "*", 13
 TX_BYTE CR
 TX_STR "SX/B Compiler"
 TX_BYTE CR
 WAIT_MS 250, 2
 GOTO Main

 TX_STR Prompt ' send prompt
 cmd = RX_BYTE ' get command
 IF cmd = CR THEN ' clear early CR
 TX_STR CRLF
 GOTO Main
 ENDIF
 char = RX_BYTE
 IF char <> CR THEN ' wait for CR
 TX_STR CRLF
 GOTO Main
 ENDIF

 IF cmd = "V" THEN Show_Version ' process command
 IF cmd = "G" THEN Get_Ports
 IF cmd = "S" THEN Set_Ports
 IF cmd = "H" THEN Set_HiPort
 IF cmd = "L" THEN Set_LoPort
 IF cmd = "P" THEN Set_OnePort
 IF cmd = "R" THEN Reset_Ports

 TX_STR CRLF ' force whitespace
 GOTO Main

Show_Version:
 TX_STR Version ' send the version
 GOTO Main

Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 213

Get_Ports:
 TX_STR PortStatus ' send header
 TX_BIN8 PortHi ' send port status
 TX_BYTE " " ' separator
 TX_BIN8 PortLo
 TX_STR CRLF
 GOTO Main

Set_Ports:
 TX_STR Pad ' send bad
 PortHi = RX_BIN8 ' get high bits
 TX_BYTE " "
 PortLo = RX_BIN8 ' get low bits
 TX_STR CRLF
 GOTO Main

Set_HiPort:
 TX_STR Pad
 PortHi = RX_BIN8 ' get high bits
 TX_STR CRLF
 GOTO Main

Set_LoPort:
 TX_STR Pad
 PortLo = RX_BIN8 ' get low bits
 TX_STR CRLF
 GOTO Main

Set_OnePort:
 TX_STR Pad
 idx = RX_DEC2 ' get port value, 1 - 16
 TX_BYTE " "
 cmd = RX_BYTE ' get command, "0".."1"
 IF idx >= 1 THEN
 IF idx <= 8 THEN
 DEC idx ' zero align
 temp1 = 1 << idx ' make mask
 IF cmd = "1" THEN
 PortLo = PortLo | temp1 ' turn on port bit
 ENDIF
 IF cmd = "0" THEN
 temp1 = ~temp1 ' invert mask
 PortLo = PortLo & temp1
 ENDIF
 ENDIF
 ENDIF
 IF idx >= 9 THEN
 IF idx <= 16 THEN
 idx = idx - 9 ' zero align
 temp1 = 1 << idx ' make mask

Column #125: Control from Your Favorite Terminal

Page 214 • The Nuts and Volts of BASIC Stamps (Volume 6)

 IF cmd = "1" THEN
 PortHi = PortHi | temp1 ' turn on port bit
 ENDIF
 IF cmd = "0" THEN
 temp1 = ~temp1 ' invert mask
 PortHi = PortHi & temp1
 ENDIF
 ENDIF
 ENDIF
 TX_STR CRLF
 GOTO Main

Reset_Ports:
 PortHi = %00000000 ' clear high port
 PortLo = %00000000 ' clear low port
 TX_STR CRLF
 GOTO Main

' ---
' Subroutine Code
' ---

' Use: WAIT_MS baseDelay {, multiplier }
' -- delays in milliseconds: baseDelay { x multiplier }
' -- multiplier is optional

WAIT_MS:
 temp1 = __PARAM1 ' capture base delay
 IF __PARAMCNT = 2 THEN ' multiplier?
 temp2 = __PARAM2 ' yes, capture
 ELSE
 temp2 = 1 ' no, set to 1
 ENDIF
 IF temp1 > 0 THEN
 IF temp1 > 0 THEN
 PAUSE temp1 * temp2
 ENDIF
 ENDIF
 RETURN

' ---

' Use: theVar = RX_BYTE
' -- receives one byte on "SIn" at "Baud"
' -- converts "a".."z" to "A".."Z" (makes uppercase)

RX_BYTE:
 SERIN SIn, Baud, temp1 ' rx the byte
 IF temp1 >= "a" THEN ' check for lowercase
 IF temp1 <= "z" THEN

Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 215

 temp1 = temp1 - $20 ' make uppercase if needed
 ENDIF
 ENDIF
 RETURN temp1

' ---

' Use: theVar = RX_BIN8
' -- receives number sent as text in binary format
' -- up to eight digits
' -- non "0" or "1" digit terminates input

RX_BIN8:
 temp3 = 0 ' clear return value
 FOR temp4 = 1 TO 8 ' loop through 8 bits
 temp5 = RX_BYTE ' get character
 IF temp5 >= "0" THEN ' validate
 IF temp5 <= "1" THEN '
 temp3 = temp3 << 1 ' shift bits
 IF temp5 = "1" THEN
 INC temp3 ' add "1" bit
 ENDIF
 ELSE
 EXIT
 ENDIF
 ELSE
 EXIT ' exit if not "0" or "1"
 ENDIF
 NEXT
 RETURN temp3

' ---

' Use: theVar = RX_DEC2
' -- receives number sent as text in decimal format
' -- up to two digits
' -- non "0".."9" digit terminates input

RX_DEC2:
 temp3 = 0 ' clear return value
 FOR temp4 = 1 TO 2 ' loop through 2 digits
 temp5 = RX_BYTE ' get character
 IF temp5 >= "0" THEN ' validate
 IF temp5 <= "9" THEN
 temp3 = temp3 * 10 ' shift digits
 temp5 = temp5 - "0" ' convert ASCII to value
 temp3 = temp3 + temp5 ' add to return var
 ELSE
 EXIT
 ENDIF
 ELSE

Column #125: Control from Your Favorite Terminal

Page 216 • The Nuts and Volts of BASIC Stamps (Volume 6)

 EXIT
 ENDIF
 NEXT
 RETURN temp3

' ---

' Use: TX_BYTE theByte {, count}
' -- transmit "theByte" at "Baud" on "SOut"
' -- optional "count" may be specified (must be > 0)

TX_BYTE:
 temp1 = __PARAM1 ' save byte
 IF __PARAMCNT = 1 THEN ' if no count
 temp2 = 1 ' set to 1
 ELSE ' otherwise
 temp2 = __PARAM2 ' get count
 IF temp2 = 0 THEN ' do not allow 0
 temp2 = 1
 ENDIF
 ENDIF
 DO WHILE temp2 > 0 ' loop through count
 SEROUT SOut, Baud, temp1 ' send the byte
 DEC temp2 ' decrement count
 LOOP
 RETURN

' ---

' Use: TX_STR [string | label]
' -- "string" is an embedded string constant
' -- "label" is DATA statement label for stored z-String

TX_STR:
 temp3 = __PARAM1 ' get string offset
 temp4 = __PARAM2 ' get string base

 DO
 READ temp4 + temp3, temp5 ' read a character
 IF temp5 = 0 THEN EXIT ' if 0, string complete
 TX_BYTE temp5 ' send character
 INC temp3 ' point to next character
 temp4 = temp4 + Z ' update base on overflow
 LOOP
 RETURN

' ---

' Use: TX_BIN8 theByte
' -- transmits value of "theByte" in BIN8 format

Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 217

TX_BIN8:
 temp3 = __PARAM1 ' save the value
 FOR temp4 = 1 TO 8 ' loop through eight bits
 IF temp3.7 = 1 THEN ' if MSB is set
 TX_BYTE "1" ' send "1"
 ELSE ' else
 TX_BYTE "0" ' send "0"
 ENDIF
 temp3 = temp3 << 1 ' shift next bit to MSB
 NEXT
 RETURN

Column #125: Control from Your Favorite Terminal

Page 218 • The Nuts and Volts of BASIC Stamps (Volume 6)

' ===
'
' File...... SX52_Serial_Test.SXB
' Purpose...
' Author....
' E-mail....
' Started... 10/15/2005
' Updated...
'
' ===

' ---
' Program Description
' ---

' ---
' Device Settings
' ---

DEVICE SX52, OSCHS2, BOR42
FREQ 50_000_000 ' Use a 50 MHz Ceramic Resonator w/Parallel
 ' 10K resistor across OSC1 & OSC2

' ---
' IO Pins
' ---

RxD VAR RA.0
TxD VAR RA.1

' Used in original example
'RxD VAR RA.2
'TxD VAR RA.3

' ---
' Constants
' ---

PcBaud CON "T9600"
CrLf CON 1

' ---
' Variables
' ---

temp1 VAR Byte ' subroutine work vars
temp2 VAR Byte
temp3 VAR Byte

Column #125: Control from Your Favorite Terminal

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 219

temp4 VAR Byte
temp5 VAR Byte

' ===
 PROGRAM Start
' ===

Text:
 DATA 13, 10, "Test of the SX52 Proto Board", 13, 10, 0

' ---
' Subroutine Declarations
' ---

WAIT_MS SUB 1, 2
TX_BYTE SUB 1
TX_STRING SUB 2 ' string pointer = 2 bytes

' ---
' Program Code
' ---

Start:
 TRIS_A=%00000000 ' All outputs
 RA=2 ' Set RA.1 High (RS-232 Output)
 WAIT_MS 250, 4
 TX_BYTE 12 ' clear terminal screen

Main:
 WAIT_MS 250, 4
 TX_STRING Text
 GOTO Main

' ---
' Subroutine Code
' ---

' Use: TX_BYTE theByte
' -- sends "theByte" out TxD at Baud

TX_BYTE:
 temp3 = __PARAM1 ' capture byte
 SEROUT TxD, PcBaud, temp3 ' send it
 RETURN

' ---

Column #125: Control from Your Favorite Terminal

Page 220 • The Nuts and Volts of BASIC Stamps (Volume 6)

' Use: TX_STRING [string | label]
' -- "string" is an embedded literal string
' -- "label" is DATA statement label for stored z-String

TX_STRING:
 temp1 = __PARAM1 ' get string offset
 temp2 = __PARAM2
 DO
 READ temp2 + temp1, temp3 ' read a character
 IF temp3 = 0 THEN EXIT ' if 0, string complete
 TX_BYTE temp3 ' send the byte
 INC temp1 ' point to next character
 temp2 = temp2 + Z ' update base on overflow
 LOOP

 RETURN

' ---

' Use: WAIT_MS baseDelay {, multiplier }
' -- delays in milliseconds: baseDelay { x multiplier }
' -- multiplier is optional

WAIT_MS:
 temp4 = __PARAM1 ' capture base delay
 IF __PARAMCNT = 2 THEN ' multiplier?
 temp5 = __PARAM2 ' yes, capture
 ELSE
 temp5 = 1 ' no, set to 1
 ENDIF
 IF temp4 > 0 THEN
 IF temp5 > 0 THEN
 PAUSE temp4 * temp5
 ENDIF
 ENDIF
 RETURN

' ---

