
Column #116: BASIC Stamp Accessories Made Easier

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 275 

Column #116 December 2004 by Jon Williams: 

BASIC Stamp Accessories Made Easier 

Not long after the BASIC Stamp started a revolution in small microcontrollers, Scott Edwards 

started what turned into a cottage industry: serial accessories.  Thanks to the new – and free! 

– SX/B compiler from Parallax, you too can join the Serial Accessory club ... and do so much 
more. 

If you were around this time last year you may remember my absolute glee at the return of the 
BS1 – via programming support with the BASIC Stamp IDE that runs in Windows.  I've had a 
great time this past year, and like our project of a year ago I have created a few serial 
accessory devices using the BS1 as the host controller.   

While this works and is fine for one-off experiments, it's not really practical from a cost 
standpoint, especially when one has a good idea that is marketable to a large group of users.  
Well, I've got good news that will top your list of stocking stuffers this holiday season: 
Parallax has released a free BASIC language compiler for the SX microcontroller.  Yes, that's 
right; free.  



Column #116: BASIC Stamp Accessories Made Easier

Page  276 • The Nuts & Volts of BASIC Stamps (Volume 4)

I can hear you now, "Crimony, have they lost their minds?"  Of course not.  But as you've 
seen in recent months, Parallax has made getting started with the SX micro easier by reducing 
the cost of the SX-Key programming tool.  By adding SX/B to the SX-Key software the SX-
Key becomes an even better bargain, and now even easier to use. 

From Problem Solver to Product 

Before I get into the details, let me give you a bit of history, and make sure that I manage your 
expectations.  The SX/B compiler started out as a tool to help remove some of the drudgery of 
getting an assembly language program started.  As such, it didn't support many of the BASIC 
language instructions we're all used to.  But it worked so well that the team responsible for 
putting it all together decided it would be worth pushing ahead, moving toward a full-fledged 
– albeit small – compiler.  So over the next several months they added features that moved 
SX/B from simple a helper program to one that would serve the professional engineer as well 
as the student or hobbyist who is attempting to make the move from high-level to low-level 
coding. 

Let me start by explaining what SX/B is and isn't.  SX/B is a straight, in-line compiler that 
converts BASIC (very much like BS1) syntax to SX assembly code.  Being an inline 
compiler, no attempt to optimize program space is made – this is left to the programmer (and 
not hard to do).  Why not optimize?  Well, optimizing compilers are very complicated (and 
generally have big price tags), and the output is not really suitable to be modified by the 
programmer.  You can do great things with an optimizing compiler, but what you really can't 
do (easily) is learn from it. 

And that's one of Parallax's primary goals for SX/B: to help people learn how to code in 
assembly language by seeing the assembly code output from the compiler.  This is possible 
because every line of code is translated into a block of assembly instructions, and the original 
BASIC code is inserted into the assembly listing as a comment.  This allows you to see what's 
happening and, when you're so inclined, to modify the assembly code before downloading to 
the SX. 

SX/B = PBASIC? 

Well, sort of.  One of the things that I think many people will find when they look at the 
output from the SX/B compiler is that it takes a lot of code to do what seems like a simple 
thing.  What many will conclude, I believe, is that the BASIC Stamp does far more work 
under the hood than was ever imagined. 



Column #116: BASIC Stamp Accessories Made Easier

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 277 

To that end, the SX/B language is somewhat PBASIC compatible; the goal was to get it fairly 
close to BS1 syntax with a few additions (like SHIFTOUT and SHIFTIN) and changes to 
simplify compiler design so that it could be used as an effective learning tool.  With that in 
mind, complex functions like SEROUT and SERIN accept only single output/input 
parameters.  If, for example, you want to send or receive a string of bytes you must do so in a 
loop.  

And let me be very clear on this point: the SX/B compiler does not excuse the programmer 
from understanding the architecture and behavior of the SX micro.  Don't let that worry you 
though, if you've been around BASIC Stamps or other micros for any length of time the SX 
will not be hard to pick up. 

Follow the Line 

Okay, I could fill the magazine with theoretical chat, but that's not our style, it is?  Let's get 
right to our project, a serial line follower module that you can use with your BASIC Stamp-
powered robots.  And before I forget, let me give credit where it's due: the sensor design I'm 
presenting here isn't mine.  It was designed by a very nice guy named James Vroman.  I met 
James when he was living in Dallas and actively involved in the Dallas Personal Robotics 
Group (www.dprg.org).  One his robots, JavaBot (java as in coffee can), uses an array of 
sensors to follow a line.  The same array is used on the Parallax line follower module, and in 
our project here. 

Figure 116.1 shows the schematic for the line sensor array.  Each element is composed of a 
QRB1114 reflective object sensor.  Each sensor holds an IR LED and an IR phototransistor.  
When the LED is activated and the light reflected from a nearby surface, the current flowing 
through the transistor is affected -- the greater the IR reflection, the greater the current flow. 

Notice that the collector of each transistor is connected to a 10K pull-up, and that junction is 
labeled CMP.  What happens is that the 10K resistor and the (activated) transistor form a 
voltage divider, with the output of that divider fed into a comparator circuit.  By using a 
variable voltage into the other side of the comparator we can set the reflection threshold for 
the sensor array.  This allows us to "tune" the circuit for ambient light. 

Okay, to activate and monitor the sensor array we will use, of course, an SX micro; in this 
project we'll use the SX28 (note that SX/B will work with the SX18, SX20, and SX28).  
Using the SX28 gives us plenty of IO pins so that we can have a large sensor array.  The large 
array lets us follow wide lines, or have greater resolution and control when following thin 
lines. 



Column #116: BASIC Stamp Accessories Made Easier

Page  278 • The Nuts & Volts of BASIC Stamps (Volume 4)

Figure 116.1: QRB1114 Sensor Array Schematic 



Column #116: BASIC Stamp Accessories Made Easier

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 279 

Figure 116.2: SX28 Line Follower Controller Schematic 

Figure 116.2 shows the schematic for our SX28 controller circuit.  As you can see, it's 
actually quite simple.  Pin RA.0 is our serial IO connection.  It is pulled-up through 4.7K to 
make it compatible with the Parallax AppMod serial protocol which allows for two-way 
communications over the same line.  The pins on port RC will be configured as outputs to 
activate the sensor array.  Finally, pins RB.1 and RB.2 are used to monitor and analyze the 



Column #116: BASIC Stamp Accessories Made Easier

Page  280 • The Nuts & Volts of BASIC Stamps (Volume 4)

output of the sensor array.  You see, the SX has a built-in comparator that can be enabled with 
code.  The inputs of the comparator happen to be RB.1 and RB.2. 

If you do decide to build the board (complete schematic and board layout is part of this 
month's download), make sure that you do indeed use a socket for X1.  This is the socket for 
the ceramic resonator.  If you remove the resonator then you can run the program through the 
SX-Key in single step mode for debugging.  You cannot debug SX code with the resonator in 
place.  And by using a socket, you can select whatever frequency you choose.  Just be aware 
that my simple design borrows power from an external source (i.e., the Boe-Bot) and the 
faster the SX runs the more current it will consume. 

The Code that Follows the Line 

Before we actually jump into the code, let's talk requirements.  First, we want the module to 
be compatible with the Parallax AppMod serial protocol.  What this means is an open-
baudmode, bidirectional serial link.  If you're a little fuzzy on the concept of "open" baud 
modes, let me try to clear things up.  When using an open mode, the BASIC Stamp will drive 
the serial output pin one way or the other (depending on mode, true of inverted), and rely on a 
pull-up or pull-down to take care of the other pin state.  In our case, we're going to use true 
mode, which means the serial line rests at a high state, and an active bit is a low.  What we 
have to do, then, is pull the line to Vdd through a resistor.  When a "1" bit is transmitted the 
line will be pulled low by the SX or the BASIC Stamp.  For a "0" bit the serial output pin is 
made Hi-Z (input state) and the pull-up takes care of the rest. 

Why go through all this?  Well, what this does is let us connect a bunch of devices to the same 
line and if more that one go active at the same time there is no danger of a short.  If, for 
example, the BASIC Stamp and the SX both pull the line low at the same time there will be a 
data collision for sure, but no short circuit since they are at the same state.  But if one pulled 
the line low while the other was trying to drive the line high ... we could end up with blue 
smoke.  

Now that the protocol is settled, let's talk features.  How about querying the device for a 
firmware number?  I think that's a good idea, especially if we create a product for sell; we can 
allow the user to identify the firmware version of that device.  Since we're building a line 
follower, all that's left is to return the line bits.  Just to simplify things for the BASIC Stamp, 
let's create two line functions: one that returns the bits when the line is white on a black field, 
the other that returns the bits when the line is black on a white field.  Both functions will 
return a "1" when the sensor element has detected the line. 



Column #116: BASIC Stamp Accessories Made Easier

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 281 

Time to jump in.  Within the SX/B program there must exist a directive called PROGRAM 
that tells the code where to begin after the start-up code (IO and variables initialization) is 
executed.  If an ISR (interrupt service routine) is declared, the directive must come after that. 
In our case, the directive is PROGRAM Start, so the code will begin its execution at the label 
Start.

You're probably wondering why the subroutines are placed ahead of the main code.  This has 
to do with the SX architecture.  The entry point of a subroutine must be in the first half (256 
words) of the code page where it lives.  The SX28 has four code pages of 512 words (2K 
total).  This program is small and everything fits into page 0.  For larger programs we can 
create a "jump table" and move subroutine code to another page – but that's beyond the scope 
of this article.  The SX/B help file gives plenty of good examples to show how to handle 
larger programs. 

Back to Start.  The first instruction you'll see is ADDRESS $100.  The ADDRESS directive 
forces the code to be placed at a certain location.  By forcing the start code to this address, the 
assembler will complain if our subroutines run too long.  This wasn't the case here, but is still 
a good idea to use if you're going to put your subroutines on page 0. 

The next few lines setup the IO structure.  On the SX28 we have three ports (RA, RB, and 
RC) for a total of 20 IO pins (RA has only four pins).  On ports A and B we have a bunch of 
unused pins, and it's not a good idea to leave these floating.  What we can do, then, is activate 
the weak pull-ups on the unused pins to pull then into a known state.  What you have probably 
noticed is that a 0 in the respective bit activates the pull-up.  When using the TRIS registers 
(equivalent to the BASIC Stamp DIRS), a 0 causes the respective pin to be an output – this is 
just the opposite of how we program the BASIC Stamp and we must remain mindful of this 
fact when programming in SX/B. 

In short, our setup section sets makes all unused pins inputs and enables the pull-ups on those 
pins.  The reason that RB.0 is made an output when it is not connected to anything is that it 
will hold the state of the comparator, so the comparator result will make it high or low and 
allow us to read that bit as part of our line scan. 

With the I/O pins initialized it's time to start – start waiting, that is.  This device is a serial 
slave and speaks only when spoken too.  The front end of the code (that begins at Main) waits 
for the proper message header.  In our case that header will be "!LF" (for line follower).  
Here's the code that waits for the message header: 



Column #116: BASIC Stamp Accessories Made Easier

Page  282 • The Nuts & Volts of BASIC Stamps (Volume 4)

Main:
  GOSUB RX_Byte, @char 
  IF char <> "!" THEN Main 
  GOSUB RX_Byte, @char 
  IF char <> "L" THEN Main 
  GOSUB RX_Byte, @char 
  IF char <> "F" THEN Main 

The "!" character is a legacy thing from the AppMod serial protocol.  In some AppMods, the 
"!" is used to set detect and set the baud rate.  We can't do that (auto-baud detect) without 
resorting to assembly language, so we've fixed our baud rate to 9600.  This is about as fast as 
we can go when using a 4 MHz clock. 

As I stated earlier, many of the functions in SX/B work differently than their BASIC Stamp 
counterparts.  SERIN, for example, will wait for a byte – one byte, and we have to do our own 
filtering.   And also remember that each time we have SERIN in our program it gets translated 
into a set of assembly instructions.  If we have a bunch of SERINs, we could quickly chew up 
our programming space.  To save space, we can put SERIN into a subroutine, and even give it 
the ability to work with parameters.  Here's that routine: 

RX_Byte:
  rtnAddr = __PARAM1 
  SERIN Sio, Baud, temp1 
  PUT rtnAddr, temp1 
  RETURN 

On entering the subroutine we make a copy of an internal SX/B variable called __PARAM1.  
This variable holds the first parameter sent to the subroutine.  Now go back and look at the 
code at Main.  Notice how we call the subroutine with a variable, and in front of that variable 
is the "@" character.  What the "@" character does is tell the compiler to send the address of 
the variable instead of its value.  This is very powerful, because it lets create a subroutine that 
can affect any variable we send to it using this technique. 

Back in our RX_Byte subroutine we then use SERIN to receive the byte and return it to the 
variable that was passed by using the PUT function.  PUT takes a location and value as 
arguments; in this case we are putting the variable received by SERIN into the address that 
was passed to the subroutine. 

Once we've received a byte we compare it to the list of valid characters in our header string.  
If there is ever a mismatch, the code is forced back to the beginning.  Once we have received 
"!", "S", and "L" in that order we will wait for one more byte that will be the command to 
process. 



Column #116: BASIC Stamp Accessories Made Easier

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 283 

For our line follower there are three valid command bytes: "V" (return version), "B" (return 
black line bits), and "W" (return white line bits).  Let's start with "V."  In fact, let's show how 
to get the BASIC Stamp to request and wait for the version code from our line follower: 

  SEROUT Sio, Baud, ["!LFV"] 
  SERIN Sio, Baud, [STR version\3] 

Pretty simple, right?  It is – but there's something we need to be aware of when designing 
serial accessories for the BASIC Stamp.  Even though the Stamp does a SERIN right after the 
SEROUT, it is still much slower than the SX.  What this means is that the SX has to allow 
time for the BASIC Stamp to get ready before sending any information back.  You'll see that 
in just a second. 

Check_V:
  IF char <> "V" THEN Check_B 
  GOSUB Delay, 250, 4 
  idx = 0 

Next_Char:
  READ Rev_Code + idx, char 
  INC idx 
  IF char = 0 THEN Main  
  GOSUB TX_Byte, char 
  GOTO Next_Char 

When we do receive a "V" command code the IF-THEN line will fail and the program will 
drop through to a call to another subroutine named Delay.  This is another case where 
program space is conserved by placing high-level (lots of assembly code) functions into 
subroutines so that the high-level functions are compiled in one place.  Let's have a look at the 
Delay subroutine: 

Delay:
  temp1 = __PARAM1 
  temp2 = __PARAM2 
  PAUSEUS temp1 * temp2 
  RETURN 

This subroutine is expecting two parameters; a delay value and a multiplier.  You may be 
wondering why we have to save __PARAM1 and __PARAM2.  The reason is that these 
variables will be used when the PAUSEUS (pause in microseconds) subroutine gets 



Column #116: BASIC Stamp Accessories Made Easier

Page  284 • The Nuts & Volts of BASIC Stamps (Volume 4)

compiled; so if we didn't save the parameters that get passed they would ultimately be 
clobbered. 

Since we don't need particularly long delays in this program, and there is a time when very 
short delays are needed, we're using PAUSEUS.  We're also using a syntax variation that lets 
the ultimate delay be the product of the two values passed to it.  With this syntax we could 
create delays up to 65 milliseconds. By passing 250 and 4 to the Delay subroutine we create a 
delay of one millisecond; this is plenty of time for the BASIC Stamp to load its SERIN 
routine and be ready for what we send back to it. 

Now that the BASIC Stamp is ready, we can transmit the three-character version string.  The 
string itself is stored in a DATA table, very much like we would do with a BASIC Stamp.  
The difference between the SX and the BASIC Stamp is that SX tables are read-only; we 
cannot rewrite them at run time. 

The transmission code is pretty easy: it grabs a character from the string (table) and if it's not 
zero, it sends it to the BASIC Stamp.  Here's the transmit subroutine code: 

TX_Byte:
  temp1 = __PARAM1 
  SEROUT Sio, Baud, temp1 
  RETURN 

By now the structure should be fairly obvious: we make a copy of the parameter (variable) 
that gets passed and then send it out.  In this case, though, we don't use "@" so what we end 
up passing is the value of the variable. 

The last major step is reading the line sensor array.  If the command byte is "B" or "W" we 
will read the sensor array with this code: 

Get_Line:
  rtnAddr = __PARAM1   ' save return address 
  CMP_B = 0     ' enable comparator 
  temp1 = %00000000 
  FOR idx = 0 TO 6 
    Sensor = 1 << idx 
    \ MOV __PARAM1, #250 
    \ DJNZ __PARAM1, $ 
    temp1 = temp1 << 1 
    temp1.0 = CmpOut 
  NEXT idx 



Column #116: BASIC Stamp Accessories Made Easier

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 285 

  Sensor = %00000000 
  PUT rtnAddr, temp1 
  CMP_B = $FF 
  RETURN 

As with the RX_Byte routine, we're going to pass an address parameter to Get_Line.  When 
we're done that address (hence its variable) will hold the current line sensor value.  On 
entering the routine we activate the SX comparator by clearing bits 7 and 6 of CMP_B 
(comparator setup register).  By doing this, the comparator is enabled and its result output is 
routed to RB.0 (aliased as CmpOut).   

The bulk of this routine is a loop that activates a single sensor in the array.  After the sensor is 
activated there is a short delay to allow things to settle.  One of the (many) neat things about 
the SX/B compiler is that we can insert assembly code when we want to.  In this case we'll 
pop in two lines that will ultimately result in a 250 microsecond delay.  Yes, we could have 
used our Delay subroutine, but why not stretch a little bit and have some fun?  After the delay 
we will rotate our temporary line bits variable and then place the comparator output into bit 
zero of it.  By going through this loop seven times we end up with a byte that holds the value 
of the line sensor array.  Keep in mind that the value is going to be affected by the setting of 
the pot connect to RB.2.  The pot is used to set the sensitivity of the sensor elements, so we're 
able to tune the circuit for ambient lighting. 

When the loop is complete we finish by making sure that all the sensors are off, we move the 
scan result to the passed variable, then we shutdown the comparator to conserve as much 
power as possible.   

The design of the sensor array and the comparator inputs will return a "1" bit when the sensor 
is over a highly reflective surface.  Well, what happens when we have a black line on a white 
surface?  It's actually pretty easy to deal with.  Let's have a look: 

Check_B:
  IF char <> "B" THEN Check_W 
  GOSUB Delay, 250, 4 
  GOSUB Get_Line, @lnBits 
  lnBits = lnBits XOR %01111111 
  GOSUB TX_Byte, lnBits 
  GOTO Main 

After retrieving the line sensor value we can invert the bits using XOR, then we send it off to 
the BASIC Stamp.  Once the line value has been transmitted the code returns to the top of the 
program and waits for another command sequence. 



Column #116: BASIC Stamp Accessories Made Easier

Page  286 • The Nuts & Volts of BASIC Stamps (Volume 4)

For those that want to build this serial line follower project I've included the schematic and 
PCB layout in ExpressPCB (www.expresspcb.com) format.  Please understand that using 
these files is at your own risk. I'm certainly no PCB designer – heck, I'm barely a 
programmer.  Please check everything carefully before you make an order.  I actually found 
an error in my first layout that I corrected with a bit of PCB surgery.  That error has been 
removed from the project files that you can download.  Figure 116.3 shows my prototype 
board, ready to mount on the bottom a Boe-Bot.  What, no Boe-Bot?  Well, RadioShack®

carries them now so a robot may be available in your neighborhood as you read this.  Figure 4 
shows the output of the BASIC Stamp test program that can be used to calibrate the sensor 
pot. 

Figure 116.3: Line Follower PCB (board by ExpressPCB) 



Column #116: BASIC Stamp Accessories Made Easier

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 287 

Figure 116.4: Output from BASIC Stamp test program 

There's More ... A Lot More 

Wow, I'm out of breath – and out of space.  Let me assure you that SX/B is a lot of fun to play 
with and with a bit of patience and study, you'll be as confident at it as you are with the 
BASIC Stamp.  You're probably wondering how you get the SX/B compiler.  The answer is 



Column #116: BASIC Stamp Accessories Made Easier

Page  288 • The Nuts & Volts of BASIC Stamps (Volume 4)

as simple as downloading the SX-Key software from Parallax; SX/B is built right in.  Of 
course, you'll need an SX-Key to program the SX chips, and some sort of programming 
board.  Parallax has a small development board called the SX Tech Board, and if you're 
feeling really industrious you could even build your own. 

Parallax has a couple great books on the SX, and more coming.  You can download Al 
Williams' book, Exploring the SX Microcontroller with Assembly and BASIC Programming, 
and Günther Daubach's book, Programming the SX Microcontroller – A Complete Guide is 
available in a bound volume.  There is a version of the SX-Key starter kit that includes both 
these books, the SX-Key programming tool, and the SX Tech Board – it's a great way to get 
started with the SX.  As for the Internet, James Newton's SX List (www.sxlist.com) is full of 
useful information and tips on programming the SX micro.  Check it out. 

As I close, please accept my sincere wishes for a happy and peaceful holiday season. And 
until next year (which is just a month away!), Happy Stamping. 



Column #116: BASIC Stamp Accessories Made Easier

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 289 

' ========================================================================= 
'
'   File...... SERIAL_LF.SXB 
'   Purpose... Serial Line Follower module for robots 
'   Author.... Jon Williams -- Parallax, Inc. 
'   E-mail.... jwilliams@parallax.com 
'   Started...
'   Updated... 10 OCT 2004 
'
' ========================================================================= 

' ------------------------------------------------------------------------- 
' Program Description 
' ------------------------------------------------------------------------- 
'
' Serial Line Follower module for BOE-Bots 
'
' The module uses an open baudmode serial connection and the Parallax 
' AppMod protocol structure. 
'
' Valid serial commands from host: 
'
' "!LFV" -- returns 3-byte version string (e.g., "0.1") 
' "!LFB" -- returns sensor bits, black line on white field 
' "!LFW" -- returns sensor bits, while line on black field 

' ------------------------------------------------------------------------- 
' Device Settings 
' ------------------------------------------------------------------------- 

DEVICE          SX28, OSCXT2, TURBO, STACKX, OPTIONX 
FREQ            4_000_000 

' ------------------------------------------------------------------------- 
' IO Pins 
' ------------------------------------------------------------------------- 

Sio  VAR RA.0   ' serial connection 
Sensor  VAR RC   ' sensor control pins 
CmpOut  VAR RB.0   ' comparitor output 

' ------------------------------------------------------------------------- 
' Constants 
' ------------------------------------------------------------------------- 

Baud  CON "OT9600"  ' open, true, 9600 baud 



Column #116: BASIC Stamp Accessories Made Easier

Page  290 • The Nuts & Volts of BASIC Stamps (Volume 4)

' ------------------------------------------------------------------------- 
' Variables 
' ------------------------------------------------------------------------- 

char  VAR Byte   ' serial char in and out 
lnBits  VAR Byte   ' line sensor bits 
idx  VAR Byte   ' loop counter 

rtnAddr  VAR Byte   ' return address parameter 
temp1  VAR Byte 
temp2  VAR Byte  

' ========================================================================= 
  PROGRAM Start 
' ========================================================================= 

Rev_Code:
  DATA "0.1", 0 

' ------------------------------------------------------------------------- 
' Subroutines 
' ------------------------------------------------------------------------- 

' Wait for and receive a byte from the serial connection 
' -- Use: GOSUB RX_Byte, @theByte 
' -- serial input byte is placed in 'theByte' 

RX_Byte:
  rtnAddr = __PARAM1    ' save return address 
  SERIN Sio, Baud, temp1   ' get serial byte 
  PUT rtnAddr, temp1    ' put in return address 
  RETURN 

' Transmit a byte through the serial connection 
' -- Use: GOSUB TX_Byte, theByte 
' -- transmits 'theByte' 

TX_Byte:
  temp1 = __PARAM1    ' save serial byte 
  SEROUT Sio, Baud, temp1   ' transmit it 
  RETURN 

' Insert program delay 
' -- Use: GOSUB Delay, delayVal, multiplier 
' -- holds program 'delayVal' * 'multiplier' microseconds 



Column #116: BASIC Stamp Accessories Made Easier

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 291 

Delay:
  temp1 = __PARAM1    ' grab parameters 
  temp2 = __PARAM2 
  PAUSEUS temp1 * temp2   ' do the delay 
  RETURN 

' Reads the line sensor bits 
' -- Use: GOSUB Get_Line, @theByte 
' -- line bits are placed in 'theByte' 

Get_Line:
  rtnAddr = __PARAM1    ' save return address 
  CMP_B = 0     ' enable comparator 
  temp1 = %00000000    ' clear line bits 
  FOR idx = 0 TO 6    ' loop through 7 sensors 
    Sensor = 1 << idx    ' activate element 
    \ MOV __PARAM1, #250   ' 250 us delay @ 4 MHz 
    \ DJNZ __PARAM1, $ 
    temp1 = temp1 << 1    ' setup output var 
    temp1.0 = CmpOut    ' get new bit 
  NEXT idx 
  Sensor = %00000000    ' deactivate all elements 
  PUT rtnAddr, temp1    ' retun value to sender 
  CMP_B = $FF     ' shutdown comparitor 
  RETURN 

' ------------------------------------------------------------------------- 
' Program Code 
' ------------------------------------------------------------------------- 

Start:
  ADDRESS $100     ' prevent subs overrun 
  PLP_A = %0001    ' activate pull-ups, 1 - 3 
  PLP_B = %00000111    ' activate pull-ups, 3 - 7 
  TRIS_B = %11111110    ' RB.0 is an output 
  Sensor = %00000000    ' clear sensor 
  TRIS_C = %00000000    ' make pins outputs  

Main:
  GOSUB RX_Byte, @char 
  IF char <> "!" THEN Main   ' wait for "!" 
  GOSUB RX_Byte, @char 
  IF char <> "L" THEN Main   ' wait for "L" 
  GOSUB RX_Byte, @char 
  IF char <> "F" THEN Main   ' wait for "F" 

Get_Command:



Column #116: BASIC Stamp Accessories Made Easier

Page  292 • The Nuts & Volts of BASIC Stamps (Volume 4)

  GOSUB RX_Byte, @char    ' wait on a character 

Check_V:     ' version 
  IF char <> "V" THEN Check_B 
  GOSUB Delay, 250, 4    ' let BASIC Stamp get ready 
  idx = 0     ' reset index 

Next_Char:
  READ Rev_Code + idx, char   ' read character 
  INC idx     ' update index 
  IF char = 0 THEN Main    ' if 0, we're done 
  GOSUB TX_Byte, char    ' transmit the character 
  GOTO Next_Char    ' repeat until done 

Check_B:     ' black line 
  IF char <> "B" THEN Check_W 
  GOSUB Delay, 250, 4    ' let BASIC Stamp get ready 
  GOSUB Get_Line, @lnBits   ' get line bits 
  lnBits = lnBits XOR %01111111  ' make line bit = 1 
  GOSUB TX_Byte, lnBits   ' send line bits 
  GOTO Main 

Check_W:     ' white line 
  IF char <> "W" THEN Check_X 
  GOSUB Delay, 250, 4    ' let BASIC Stamp get ready 
  GOSUB Get_Line, @lnBits   ' get line bits 
  GOSUB TX_Byte, lnBits   ' send line bits 
  GOTO Main 

Check_X:
  ' 
  ' for future expansion 
  ' 
  GOTO Main 



Column #116: BASIC Stamp Accessories Made Easier

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 293 

' ========================================================================= 
'
'   File...... SLF_TEST.BS2 
'   Purpose... Serial Line Follower Test 
'   Author.... Jon Williams -- Parallax, Inc. 
'   E-mail.... jwilliams@parallax.com 
'   Started... 
'   Updated... 10 OCT 2004 
'
'   {$STAMP BS2} 
'   {$PBASIC 2.5} 
'
' ========================================================================= 

' -----[ Program Description ]--------------------------------------------- 
'
' Simple test program for the Serial Line Follower module 

' -----[ Revision History ]------------------------------------------------ 

' -----[ I/O Definitions ]------------------------------------------------- 

Sio             PIN     15                      ' use BOE servo connector 

' -----[ Constants ]------------------------------------------------------- 

#SELECT $STAMP 
  #CASE BS2, BS2E, BS2PE 
    T1200       CON     813 
    T2400       CON     396 
    T4800       CON     188 
    T9600       CON     84 
    T19K2       CON     32 
    T38K4       CON     6 
  #CASE BS2SX, BS2P 
    T1200       CON     2063 
    T2400       CON     1021 
    T4800       CON     500 
    T9600       CON     240 
    T19K2       CON     110 
    T38K4       CON     45 
#ENDSELECT

Inverted        CON     $4000 
Open            CON     $8000 

Baud            CON     Open | T9600            ' open for AppMod protocol 



Column #116: BASIC Stamp Accessories Made Easier

Page  294 • The Nuts & Volts of BASIC Stamps (Volume 4)

' -----[ Variables ]------------------------------------------------------- 

version         VAR     Byte(3) 
response        VAR     Byte 

' -----[ EEPROM Data ]----------------------------------------------------- 

' -----[ Initialization ]-------------------------------------------------- 

Reset:
  PAUSE 100 
  DEBUG CLS, 
        "Serial Line Follower", CR, 
        "--------------------", CR, 
        "Ver: " 

Get_Version:
  SEROUT Sio, Baud, ["!LFV"]                    ' request version 
  SERIN Sio, Baud, 1000, Reset, [STR version\3] ' receive version string 
  DEBUG STR version 

Robot_Screen:
  DEBUG CRSRXY, 0, 4, 
        "     ---------    ", CR, 
        "  X |         | X ", CR, 
        "  +-| xxxxxxx |-+ ", CR, 
        "  X |         | X ", CR, 
        "    |         |   ", CR, 
        "    |         |   ", CR, 
        "    |         |   ", CR, 
        "    |         |   ", CR, 
        "     ---( )---    ", CR 

' -----[ Program Code ]---------------------------------------------------- 

Main:
  SEROUT Sio, Baud, ["!LFW"]                    ' request white line bits 
  SERIN Sio, Baud, 1000, Main, [response]       ' wait for response 
  DEBUG CRSRXY, 6, 6, BIN7 response             ' display on screen 
  PAUSE 200 
  GOTO Main 

  END 

' -----[ Subroutines ]-----------------------------------------------------


