
Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

Column #139, November 2006 by Jon Williams:

Hacking the Parallax GPS Module

In September we talked about exciting new updates in the SX/B compiler and now were going
to put a few of them to use with a cool new GPS product from Parallax. This isn’t just
another GPS module, it was specifically designed to be hacker friendly. How? Well, it uses
an SX20 and the firmware was written in SX/B – and you can download this code from
Parallax. Better, still, is the addition of several nondescript pads on the PDB; these pads give
us access to I/O pins on the SX20, and with a little effort, the ability to reprogram the module
with custom firmware.

I’ve never considered myself much of a hacker, but with the Parallax GPS module I couldn’t
pass up the opportunity to give it a go – especially since the module is just begging to be
hacked! Again, that’s by design, and it should come as no surprise that Parallax teamed up
with one of the best known hackers in the western world, Joe Grand of Grand Idea Studio.

Many BASIC Stamp users know of Joe through his collaboration with Parallax on the RFID
Reader. When Joe happened across a neat little GPS receiver module from Polstar, he
showed it to Parallax and a new project was born. GPS is becoming increasingly more
available and popular with experimenters, and this is especially true in hobbyist robotics as
evidenced by the recent “mini DARPA challenge” competitions sponsored by robotics clubs.
The Parallax GPS module makes things very easy – and the size and form-factor work well,
too. Figure 139.1 shows the Parallax GPS next to a Garmin eTrex unit that we’ve used in
previous experiments.

 Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

Figure 139.1: The Parallax GPS Module (left) and the Garmin eTrex GPS Unit (right)

If you look at the schematic in Figure 139.2 you’ll see that the design is quite neat and tidy:
the major components are a Polstar PMB-248 GPS receiver (connected to J1), the SX20, and
an analog switch. The insertion of the analog switch is particularly clever on Joe’s part; this
allows the module to reroute the serial output from the GPS receiver directly to the SIO pin
when the RAW pin is pulled low. In normal (“smart”) operation, this pin is left to be pulled
high and the SX20 processes the GPS data for us.

What I like about the module is that the GPS receiver spits out NMEA string every second.
To test the output I configured the module for raw mode and fed the SIO pin to
HyperTerminal through a MAX232 level shifter. Figure 139.3 shows the NMEA sentences
provided by the Polstar GPS module. Like common GPS modules, the baud rate is 4800.

Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

Figure 139.2: Parallax GPS Module Schematic

Figure 139.3: GPS Output in NMEA Sentence Format

 Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

Custom GPS
Okay… why customize the module when it works so well? For me, there were a few reasons:
First, it would be fun and educational. Second, I could take advantage of the extra SX20 I/O
pins and, finally, I could bump up the communication speed to make it compatible with the
Parallax Servo Controller. It seems to me that the GPS module and PSC make a good
robotics pair, so making the GPS module more compatible is a good idea. And in the end,
even if you don’t decide to customize your GPS module, the code we’ll develop here can be
used for other AppMod-compatible devices.

Some time back Parallax developed a simple serial communications protocol for its
AppMods; devices that connected to the BOE’s AppMod header. The protocol uses Open-
True serial mode – this is critical. True mode means that the idle state of the serial line is
high, and Open True means that the idle (0) state is accomplished with a pull-up. When a
transmitting device wants to exert a “1” bit it pulls the line low. This configuration allows
several devices to be bussed together without fear of electrical conflicts as the serial line is
never driven high.

By tradition, the AppMod protocol starts with a “!” character, followed by a two- or three-
character device ID string. The original intent of the “!” character was to allow devices to
determine the baud rate of the incoming stream. We’re not going to do that here as auto-baud
programming can be quite messy, and our goal is to have fun. Since the likely host of the
GPS module will be a BS2-type processor, we’re going to fix the baud rate to 38.4K; this
matches the high-speed mode of the PSC, and allows the host program to have a single baud
constant for both devices.

Let’s jump in, shall we? After the obligatory definitions, our program starts as follows:

Main:
 IF Raw = 0 THEN Main

Wait_For_Header:
 char = RXBYTE
 IF char <> "!" THEN Wait_For_Header
 char = RXBYTE ToUpper
 IF char <> "G" THEN Wait_For_Header
 char = RXBYTE ToUpper
 IF char <> "P" THEN Wait_For_Header
 char = RXBYTE ToUpper
 IF char <> "S" THEN Wait_For_Header

Get_Cmd:
 char = RXBYTE ToUpper
 IF char = "I" THEN Get_ID
 IF char = "V" THEN Check_Valid

Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

 IF char = "U" THEN Set_Time_Offset
 IF char = "T" THEN Get_Time
 IF char = "L" THEN Get_Lat
 IF char = "O" THEN Get_Long
 IF char = "K" THEN Get_Knots
 IF char = "H" THEN Get_Heading
 IF char = "X" THEN X_Port
 GOTO Main

The first thing we need to do is check the start of the Raw input pin (RA.2). This pin is
normally pulled high to enable “smart” mode, i.e., intervention by the SX20. When
connected to ground, this signal reroutes the GPS output directly to the SIO pin using the
analog switch. Since the SX20 is no longer connected to SIO we simply loop at Main until
Raw returns high. Normally, one will select “raw” or “smart” mode via hardware, yet this is a
standard input and could be controlled dynamically by the host processor. Just keep in mind
that raw mode output is at 4800 baud, and smart mode serial I/O is at 38.4 kBaud.

Assuming we’re in smart mode the program jumps done to Wait_For_Header where we do
just that: we wait on the “!GPS” header that precedes a command or request from the host.
From a PBASIC standpoint this may look a little clumsy but this is, essentially, how the
PBASIC WAIT modifier operates. And if you look at the compiled output you’ll see that it
uses very little code. Note that we’ve wrapped the SERIN function in the RXBYTE
subroutine to conserve program space – this is always a good idea for commands that generate
a lot of assembly code, and we’ll see more examples of that in our program.

After the proper header has arrived we pull the next byte from the stream and compare it to a
list of valid commands. If there is a match we will jump to the code that handles that
command, otherwise we’ll branch back to the top and wait for another header/command
sequence. I chose the IF-THEN style for this section because I find it easy to update and
modify. SX/B now includes an ON-GOTO structure that some programmers will find a bit
more elegant.

Let’s work through a few of the commands – we don’t have to go into detail about all because
you’ll see that they take advantage of some core subroutines, and those routines I think you’ll
find useful in other SX/B programs.

My version of the “smart” GPS module behaves a little differently than the Parallax program
in that it buffers the GPS stream (like we did with the scratchpad RAM in the old BS2p GPS
project), and then pulls data from it instead of waiting on a new stream for each command.
What this means is that we need to get a valid stream before we ask for any other data, and
this is the purpose of the Check_Valid (command = “V”) code:

 Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

Check_Valid:
 GETRMC
 FINDFIELD 1
 char = GETBUF bufPntr
 DELAYMS 15
 TXBYTE char
 GOTO Main

What we’re going to see is that this little section of code has a whole lotta stuff going on
behind it. First things first: we need to receive and buffer the $GPRMC sentence from the
receiver, and that is the purpose of the GETRMC subroutine.

GETRMC:
 char = GPSRX
 IF char <> "$" THEN GETRMC
 char = GPSRX
 IF char <> "G" THEN GETRMC
 char = GPSRX
 IF char <> "P" THEN GETRMC
 char = GPSRX
 IF char <> "R" THEN GETRMC
 char = GPSRX
 IF char <> "M" THEN GETRMC
 char = GPSRX
 IF char <> "C" THEN GETRMC
 char = GPSRX
 IF char <> "," THEN GETRMC

 FOR bufPntr = 0 TO 63
 char = GPSRX
 PUTBUF bufPntr, char
 IF char = "*" THEN EXIT
 NEXT
 RETURN

Note that the top part of this routine works just like the code that waits on the command
header, the difference being that we’re now getting characters from the GPS receiver at 4800
baud, hence the GPSRX subroutine. Once the front part of the $GPRMC sentence has been
received we will put the rest of the characters (up to the checksum) into a 64-byte buffer.

Wait a minute… we can only have 16-byte arrays with the SX20, so how do we get a 64-byte
buffer? Well, we build it out of four 16-byte arrays and a little code. I originally wrote this
buffer code for the Parallax Inkjet module project and have found it quite useful. First, let’s
look at the variable assignments:

bufPntr VAR Byte
bufA VAR Byte (16)

Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

bufB VAR Byte (16)
bufC VAR Byte (16)
bufD VAR Byte (16)

As you can see, we’ve created four, 16-byte arrays that we’ll concatenate with a little code.
Let’s start with putting a byte into the buffer. This works very much like the BS2p’s PUT
instruction that requires an address and the byte value to write.

PUTBUF:
 tmpB1 = __PARAM1
 tmpB2 = __PARAM2
 tmpB3 = tmpB1 & %00111111
 tmpB3 = tmpB3 >> 4
 tmpB4 = tmpB1 & %00001111

 IF tmpB3 = %00 THEN
 bufA(tmpB4) = tmpB2
 ENDIF
 IF tmpB3 = %01 THEN
 bufB(tmpB4) = tmpB2
 ENDIF
 IF tmpB3 = %10 THEN
 bufC(tmpB4) = tmpB2
 ENDIF
 IF tmpB3 = %11 THEN
 bufD(tmpB4) = tmpB2
 ENDIF
 RETURN

This routine starts by collecting the buffer address (passed in __PARAM1) and the data byte
(passed in __PARAM2) and then creating the array and index pointers for the buffer. The
array pointer is derived by shifting the address right four bits (we’re extracting the high
nibble), and the index within the array comes from the low nibble of the address.

This is a useful technique so let’s talk about it. What if we needed a 24-byte buffer? The
trick is to keep the array sizes equal, and use an even power of two. For a 24-byte buffer I
would use three, 8-byte arrays. This fits neatly within the SX’s banked RAM space and
allows the techniques used above for addressing, the difference being we’ll shift the address
right three bits, and use the lower three bits of the address as the index within each array.

Okay, we have the $GPRMC string buffered, but we don’t know if the string was valid.
There is a character in the string that gives us this information, and it is in the field that
follows the time. To locate a field within the string we can use the FINDFIELD subroutine.
Its purpose is to count commas until the desired position is located (and then stored in
bufPntr).

 Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

FINDFIELD:
 tmpB5 = __PARAM1

 bufPntr = 0
 IF tmpB5 > 0 THEN
 DO
 char = GETBUF bufPntr
 INC bufPntr
 IF char = "," THEN
 DEC tmpB5
 IF tmpB5 = 0 THEN EXIT
 ENDIF
 LOOP
 ENDIF
 IF bufPntr >= 64 THEN
 bufPntr = 0
 ENDIF
 RETURN

For this routine to work we must pass a field number that is greater than zero. Then we start
at the beginning of the buffer, pulling characters from it with GETBUF. For each comma
found the field number is decremented and when we reach zero we’re sitting at the start of the
desired field. I put a little error trapping in the code to prevent the pointer from being
incremented outside the bounds of the buffer.

Back to Check_Valid (yes, we’re still working on that). Now that we’re pointing at the
validity character in the GPS string we can pull it and send it back to the host. It’s a good
idea to insert a short delay (I used 15 milliseconds) before sending anything back to the host.
This allows the host to be ready with its SERIN instruction. BASIC Stamps don’t take that
long to setup, but if the host is a Javelin Stamp using one pin for serial input and output, it
takes a little extra time.

As you can see, we’ve done quite a bit of background work to support the commands required
for the “smart” mode of the module – and there’s more! One of the useful features of GPS is
getting accurate time, so let’s explore that as there are support routines used here that will
nicely migrate to other applications.

Get_Time:
 DELAYMS 15
 result = BUF2DEC 0, 2
 result_LSB = result_LSB + utcOffset
 IF result_LSB > 23 THEN
 result_LSB = result_LSB - 24
 ENDIF
 TXBYTE result_LSB

Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

 result = BUF2DEC 2, 2
 TXBYTE result_LSB
 result = BUF2DEC 4, 2
 TXBYTE result_LSB

When we have a valid $GPRMC string the first six characters indicate the current time as
hhmmss. Remember that these are text characters, so we’re forced to do a numeric
conversion. I created a little subroutine called BUF2DEC to do just that. What this does is
lets us point to a number within the buffer, specify how wide it is, and get back the decimal
value – somewhat analogous to the PBASIC DEC modifier when used with SERIN.

BUF2DEC:
 bufPntr = __PARAM1
 tmpB5 = __PARAM2
 tmpW3 = 0
 IF tmpB5 >= 1 THEN
 IF tmpB5 <= 5 THEN
 DO
 tmpW3 = MULT tmpW3, 10
 tmpB6 = GETBUF bufPntr
 tmpB6 = tmpB6 - "0"
 tmpW3 = tmpW3 + tmpB6
 INC bufPntr
 DEC tmpB5
 LOOP UNTIL tmpB5 = 0
 ENDIF
 ENDIF
 RETURN tmpW3

As I stated above we need to pass the location within the buffer (__PARAM1) and the width
of the number (__PARAM2). If the width is legal then a loop construct iterates through the
field width, doing a decimal shift left (multiply by 10) and adding in the next digit.

Multiplication is another instruction that generates a lot of assembly code and it’s best to
encapsulate within a subroutine to conserve code space. We do that in the MULT code as
shown below.

MULT:
 IF __PARAMCNT = 2 THEN
 tmpW1 = __PARAM1
 tmpW2 = __PARAM2
 ENDIF
 IF __PARAMCNT = 3 THEN
 tmpW1 = __WPARAM12
 tmpW2 = __PARAM3
 ENDIF
 IF __PARAMCNT = 4 THEN

 Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

 tmpW1 = __WPARAM12
 tmpW2 = __WPARAM34
 ENDIF

 tmpW1 = tmpW1 * tmpW2
 RETURN tmpW1

Now, there’s nothing magic here but I’m including it to illustrate a clean method for dealing
with mixed values. We can determine what got passed to the subroutine via __PARAMCNT.
When this has a value of 3 we know that we’re mixed. I tend to like to pass Word, then Byte
when I used mixed values. Note that the first parameter (the word) is passed by the compiler
via __WPARAM12, and the second parameter (the byte) is passed through __PARAM3.

Can you do it the other way, i.e., byte value first? Yes, just change the middle section like
this:

 IF __PARAMCNT = 3 THEN
 tmpW1 = __PARAM1
 tmpW2 = __WPARAM23
 ENDIF

It doesn’t matter which you use, just pick a strategy and stick with it so you can port your
subroutines from program to program without trouble.

To finish with the time the local UTC offset is added to the hours and corrected to keep the
value 0 to 23. We can send the UTC offset to the module with the “U” command; this lets us
get localized time back and not have to deal with that on the host side. The UTC offset is
always positive, so to handle a negative offset (as in -8 hours for Hollywood, CA) we will add
that value to 24.

As you look through the full listing you’ll see that the majority of the commands work like
Get_Time, plucking requested values from the GPS string and sending them back to the host.

Remapping Bits
At the top I started by saying the GPS module was hacker friendly, and it is, but it’s not
entirely hacker convenient. The realities of PCB design sometimes get us – and they do with
the extra “hacker pins” on the module. Figure 139.4 shows the bottom of the Parallax GPS
module. On the left is the host connection port, the white connector at the lower left goes to
the GPS receiver, and you can clearly see the SX20, the “hacker pads,” and the pads for
reprogramming using an SX-Key or SX-Blitz.

Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

Figure 139.4: The Parallax GPS Module, Bottom View

There are eight “hacker pads” and in an ideal world these would have been mapped to port
RB on the SX20. In the real world, however, they’re not. My guess is that his would have
complicated the PCB. No problem, we’ll “fix it in software” (as a product manager I always
hated hearing that phrase, and I use it only teasingly – nothing is broken).

This “problem” actually gives us an opportunity to explore a bit more of SX/B. In the SX20
and SX28, the data direction (TRIS) registers are not readable, they can only be written. In
the BASIC Stamp and in SX/B, this limitation is dealt with by creating shadow registers of
the current TRIS states. When we use a command that affects a pin’s I/O direction this
register is read, modified, and then written back to the associated TRIS register for that pin.
We’re going to take advantage of this “shadow register” to make those eight “hacker pins”
look like one contiguous port.

On receipt of an “X” command to the GPS module the program jumps to a section that
processes one of three secondary commands for the port: “S” for setup (set TRIS), “W” for
write bits, and “R” for read bits. Before we get to that, let’s look at the individual pin
assignments for what I’m calling the xport:

 Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

XP0 PIN RA.0
XP1 PIN RA.1
XP2 PIN RB.1
XP3 PIN RB.0
XP4 PIN RB.7
XP5 PIN RB.6
XP6 PIN RB.4
XP7 PIN RB.5

I know from the assignments above that it seems the bits are all over the place. Figure 139.5
shows the remapping of the xport bits – you can see the organization is set up to make things
easy to remember.

Figure 139.5: Remapping of the XPORT Bits

The “XS” command sequence lets us set up the xport pins like any other SX port, and we will
use SX conventions, that is, a “0” bit indicates an output, a “1” bit indicates an input. Here’s
the code:

SETUPXP:
 tmpB1 = __PARAM1
 tmpB2 = TRIS_A
 tmpB2.0 = tmpB1.0
 tmpB2.1 = tmpB1.1
 TRIS_A = tmpB2
 tmpB2 = TRIS_B

Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

 tmpB2.1 = tmpB1.2
 tmpB2.0 = tmpB1.3
 tmpB2.7 = tmpB1.4
 tmpB2.6 = tmpB1.5
 tmpB2.4 = tmpB1.6
 tmpB2.5 = tmpB1.7
 TRIS_B = tmpB2
 RETURN

As you can see there are really two sections to this code, one for each of the SX ports (RA and
RB). What we have to do is get a copy of the TRIS shadow register, modify the appropriate
bits without touching the others, and then write it back. This is in fact what a lot of SX/B
functions do when there is a necessary I/O state for an instruction. This method ensures that
the port pins not associated with our xport are not adversely affected.

Okay, now that the port bits are setup the write and read methods are downright trivial.

WRXPORT:
 tmpB1 = __PARAM1
 XP0 = tmpB1.0
 XP1 = tmpB1.1
 XP2 = tmpB1.2
 XP3 = tmpB1.3
 XP4 = tmpB1.4
 XP5 = tmpB1.5
 XP6 = tmpB1.6
 XP7 = tmpB1.7
 RETURN

RDXPORT:
 tmpB1.0 = XP0
 tmpB1.1 = XP1
 tmpB1.2 = XP2
 tmpB1.3 = XP3
 tmpB1.4 = XP4
 tmpB1.5 = XP5
 tmpB1.6 = XP6
 tmpB1.7 = XP7
 RETURN tmpB1

Yes, the funky bit mapping forces us to do things a bit at a time, but keep in mind that the
SX20 on the module is running at 20 MHz – this is pretty zippy and it the transfer of bits
happens in about two microseconds.

I think that’s about enough fun for this month, don’t you? Even if you don’t hack the Parallax
GPS module, do give it a try as it’s small, neat, and works very nicely. Remember, its raw
mode output lets us use it like any other GPS, so we can quickly port old programs to it.

 Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

Until next time, Happy Thanksgiving and Happy Stamping!

Additional Resources

Grand Idea Studio
www.grandideastudio.com

Project Code

' ===
'
' File...... GPS_JW.SXB
' Purpose... Custom Parallax GPS Receiver Control Code
' Author.... Jon Williams
' E-mail.... jwilliams@efx-tek.com
' Started...
' Updated... 05 NOV 2006
'
' ===

' ---
' Program Description
' ---
'
' Note: While Parallax included "hacker friendly" features into their GPS
' receiver module, hacks are not officially supported and you do so at
' your own peril.

' ---
' Conditional Compilation Symbols
' ---

'{$DEFINE USE_SX28_OFF} ' use SX28 on PDB

' ---
' Device Settings
' ---

'{$IFDEF USE_SX28}
DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX, BOR42
'{$ELSE}

Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

DEVICE SX20, OSCXT2, TURBO, STACKX, OPTIONX, BOR42
'{$ENDIF}

FREQ 20_000_000
ID "GPS JW02"

' ---
' IO Pins
' ---

Raw PIN RA.2 ' data I/O mode
Sio PIN RA.3 ' to/from host
RX PIN RB.2 ' from GPS
TX PIN RB.3 ' to GPS

XP0 PIN RA.0 ' hacker port pins
XP1 PIN RA.1
XP2 PIN RB.1
XP3 PIN RB.0
XP4 PIN RB.7
XP5 PIN RB.6
XP6 PIN RB.4
XP7 PIN RB.5

'{$IFDEF USE_SX28}
UnusedC PIN RC INPUT PULLUP
'{$ENDIF}

' ---
' Constants
' ---

GpsBaud CON "T4800" ' to/from GPS module
HostBaud CON "OT38400" ' match Parallax PSC

ToUpper CON 1

' ---
' Variables
' ---

idx VAR Byte
char VAR Byte
utcOffset VAR Byte
result VAR Word

bufPntr VAR Byte ' pointer for GPS buffer
bufA VAR Byte (16) ' GPS buffer

 Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

bufB VAR Byte (16)
bufC VAR Byte (16)
bufD VAR Byte (16)

tmpB1 VAR Byte ' subroutine vars
tmpB2 VAR Byte
tmpB3 VAR Byte
tmpB4 VAR Byte
tmpB5 VAR Byte
tmpB6 VAR Byte
tmpW1 VAR Word
tmpW2 VAR Word
tmpW3 VAR Word

' ===
 PROGRAM Start
' ===

' ---
' Subroutine Declarations
' ---

RXBYTE FUNC 1, 0, 1 ' get byte from host
GPSRX FUNC 1, 0 ' get byte from GPS
GETBUF FUNC 1, 1 ' get byte from buffer
RDXPORT FUNC 1, 0 ' read bits from X port
MULT FUNC 2, 2, 4 ' 16-bit multiplication
DIV FUNC 2, 2, 4 ' 16-bit division
BUF2DEC FUNC 2, 2 ' pull dec nums from buffer

DELAYUS SUB 1, 2 ' pause in microseconds
DELAYMS SUB 1, 2 ' pause in milliseconds
TXBYTE SUB 1 ' send byte to host
GETRMC SUB 0 ' get fresh GPRMC scan
FINDFIELD SUB 1 ' move bufPntr to field
GPSTX SUB 1 ' send byte to GPS
PUTBUF SUB 2 ' put byte into buffer
SETUPXP SUB 1 ' setup TRIS bits for X port
WRXPORT SUB 1 ' write bits to X port

' ---
' Program Code
' ---

Start:
 ' additional start-up items here

Main:

Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

 IF Raw = 0 THEN Main ' hold if raw mode

Wait_For_Header: ' wait for !GPS
 char = RXBYTE
 IF char <> "!" THEN Wait_For_Header
 char = RXBYTE ToUpper
 IF char <> "G" THEN Wait_For_Header
 char = RXBYTE ToUpper
 IF char <> "P" THEN Wait_For_Header
 char = RXBYTE ToUpper
 IF char <> "S" THEN Wait_For_Header

Get_Cmd:
 char = RXBYTE ToUpper ' get command byte
 IF char = "I" THEN Get_ID
 IF char = "V" THEN Check_Valid
 IF char = "U" THEN Set_Time_Offset
 IF char = "T" THEN Get_Time
 IF char = "L" THEN Get_Lat
 IF char = "O" THEN Get_Long
 IF char = "K" THEN Get_Knots
 IF char = "H" THEN Get_Heading
 IF char = "X" THEN X_Port
 GOTO Main

Get_ID:
 DELAYMS 15
 FOR idx = 0 TO 2
 READ Pgm_ID + idx, char ' read a character
 TXBYTE char ' no, send the char
 NEXT
 GOTO Main

Check_Valid:
 GETRMC ' get fresh data from GPS
 FINDFIELD 1 ' move pointer
 char = GETBUF bufPntr ' read status character
 DELAYMS 15 ' let host get ready
 TXBYTE char ' send status char to host
 GOTO Main

Set_Time_Offset:
 char = RXBYTE ' get offset value
 IF char < 24 THEN ' valid?
 utcOffset = char ' yes, save it
 ENDIF
 GOTO Main

 Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

Get_Time:
 DELAYMS 15 ' let host get ready
 result = BUF2DEC 0, 2 ' hours, two digits
 result_LSB = result_LSB + utcOffset ' localize time
 IF result_LSB > 23 THEN
 result_LSB = result_LSB - 24
 ENDIF
 TXBYTE result_LSB ' send localized hours
 result = BUF2DEC 2, 2 ' mins, two digits
 TXBYTE result_LSB ' send minutes
 result = BUF2DEC 4, 2 ' secs, two digits
 TXBYTE result_LSB ' send seconds

Get_Lat:
 DELAYMS 15
 result = BUF2DEC 9, 2 ' degrees
 TXBYTE result_LSB
 result = BUF2DEC 11, 2 ' mins
 TXBYTE result_LSB
 result = BUF2DEC 14, 3 ' fractional minutes
 result = MULT result, 60 ' convert to seconds
 result = DIV result, 1000
 TXBYTE result_LSB ' send to host
 TXBYTE result_MSB
 char = GETBUF 19 ' get direction character
 TXBYTE char
 GOTO Main

Get_Long:
 DELAYMS 15
 result = BUF2DEC 21, 3 ' degrees
 TXBYTE result_LSB
 result = BUF2DEC 24, 2 ' mins
 TXBYTE result_LSB
 result = BUF2DEC 27, 3 ' fractional minutes
 result = MULT result, 60 ' convert to seconds
 result = DIV result, 1000
 TXBYTE result_LSB ' send to host
 TXBYTE result_MSB
 char = GETBUF 32 ' get direction character
 TXBYTE char
 GOTO Main

Get_Knots:
 DELAYMS 15
 result = BUF2DEC 34, 3 ' get whole knots
 result = MULT result, 10 ' convert to tenths

Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

 char = BUF2DEC 38, 1 ' get 0.1 knots
 result = result + char ' add to result
 TXBYTE result_LSB ' send to host
 TXBYTE result_MSB
 GOTO Main

Get_Heading:
 DELAYMS 15
 result = BUF2DEC 40, 3 ' get whole degrees
 result = MULT result, 10 ' convert to tenths
 char = BUF2DEC 44, 1 ' get 0.1 degrees
 result = result + char ' add to result
 TXBYTE result_LSB ' send to host
 TXBYTE result_MSB
 GOTO Main

X_Port:
 char = RXBYTE ToUpper
 IF char = "S" THEN X_Port_Setup
 IF char = "W" THEN X_Port_Write
 IF char = "R" THEN X_Port_Read
 GOTO Main

X_Port_Setup:
 char = RXBYTE ' get setup bits
 SETUPXP char ' write to TRIS regs
 GOTO Main

X_Port_Write:
 char = RXBYTE ' get new outputs
 WRXPORT char ' write them
 GOTO Main

X_Port_Read:
 char = RDXPORT ' read xport pins
 DELAYMS 15 ' let host get ready
 TXBYTE char
 GOTO Main

' ---
' Subroutine Code
' ---

' Use: theByte = RXBYTE { ConvertToUppercase }
' -- optional parameter (1) converts byte to upper case if "a".."z"

RXBYTE:
 IF __PARAMCNT = 1 THEN ' option specified

 Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

 tmpB2 = __PARAM1 ' yes, save it
 ELSE
 tmpB2 = 0 ' no, set to default
 ENDIF
 SERIN Sio, HostBaud, tmpB1
 IF tmpB2.0 = ToUpper THEN
 IF tmpB1 >= "a" THEN ' lowercase?
 IF tmpB1 <= "z" THEN
 tmpB1.5 = 0 ' ...yes, make uppercase
 ENDIF
 ENDIF
 ENDIF
 RETURN tmpB1

' ---

' Use: TXBYTE theByte

TXBYTE:
 tmpB1 = __PARAM1 ' get byte to send
 SEROUT Sio, HostBaud, tmpB1
 DELAYUS 52 ' 2 extra stop bits
 RETURN

' ---

' Use: DELAYUS usecs

DELAYUS:
 IF __PARAMCNT = 1 THEN
 tmpW1 = __PARAM1 ' save byte value
 ELSE
 tmpW1 = __WPARAM12 ' save word value
 ENDIF
 PAUSEUS tmpW1
 RETURN

' ---

' Use: DELAYMS msecs

DELAYMS:
 IF __PARAMCNT = 1 THEN
 tmpW1 = __PARAM1 ' save byte value
 ELSE
 tmpW1 = __WPARAM12 ' save word value
 ENDIF
 PAUSE tmpW1
 RETURN

' ---

Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

' Waits for and buffers GPRMC string

GETRMC:
 char = GPSRX ' wait for $GPRMC
 IF char <> "$" THEN GETRMC
 char = GPSRX
 IF char <> "G" THEN GETRMC
 char = GPSRX
 IF char <> "P" THEN GETRMC
 char = GPSRX
 IF char <> "R" THEN GETRMC
 char = GPSRX
 IF char <> "M" THEN GETRMC
 char = GPSRX
 IF char <> "C" THEN GETRMC
 char = GPSRX ' remove leading comma
 IF char <> "," THEN GETRMC

 FOR bufPntr = 0 TO 63
 char = GPSRX
 PUTBUF bufPntr, char
 IF char = "*" THEN EXIT ' end of data
 NEXT
 RETURN

' ---

' Use: PUTBUF pntr, byteVal
' -- stores "byteVal" at "pntr"

PUTBUF:
 tmpB1 = __PARAM1 ' get pointer
 tmpB2 = __PARAM2 ' byte to store
 tmpB3 = tmpB1 & %00111111 ' keep legal
 tmpB3 = tmpB3 >> 4 ' point to array
 tmpB4 = tmpB1 & %00001111 ' index in the array

 IF tmpB3 = %00 THEN
 bufA(tmpB4) = tmpB2
 ENDIF
 IF tmpB3 = %01 THEN
 bufB(tmpB4) = tmpB2
 ENDIF
 IF tmpB3 = %10 THEN
 bufC(tmpB4) = tmpB2
 ENDIF
 IF tmpB3 = %11 THEN
 bufD(tmpB4) = tmpB2
 ENDIF
 RETURN

 Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

' ---

' Use: byteVal = GETBUF pntr

GETBUF:
 tmpB1 = __PARAM1 ' get pointer
 tmpB3 = tmpB1 & %00111111 ' keep legal
 tmpB3 = tmpB3 >> 4 ' point to array
 tmpB4 = tmpB1 & %00001111 ' index in the array

 IF tmpB3 = %00 THEN
 tmpB2 = bufA(tmpB4)
 ENDIF
 IF tmpB3 = %01 THEN
 tmpB2 = bufB(tmpB4)
 ENDIF
 IF tmpB3 = %10 THEN
 tmpB2 = bufC(tmpB4)
 ENDIF
 IF tmpB3 = %11 THEN
 tmpB2 = bufD(tmpB4)
 ENDIF
 RETURN tmpB2

' --

' Use: FINDFIELD

FINDFIELD:
 tmpB5 = __PARAM1 ' field number

 bufPntr = 0 ' start at beginning
 IF tmpB5 > 0 THEN ' do we need to look
 DO
 char = GETBUF bufPntr ' read char from buf
 INC bufPntr ' point to next
 IF char = "," THEN ' this char a comma?
 DEC tmpB5 ' yes, count down
 IF tmpB5 = 0 THEN EXIT ' are we there?
 ENDIF
 LOOP
 ENDIF
 IF bufPntr >= 64 THEN ' trap error
 bufPntr = 0
 ENDIF
 RETURN

' --

' Use: theByte = GPSRX

Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

GPSRX:
 SERIN RX, GpsBaud, tmpB1 ' get byte from PolStar
 RETURN tmpB1

' ---

' Use: GPSTX theByte

GPSTX:
 tmpB1 = __PARAM1 ' save byte
 SEROUT TX, GpsBaud, tmpB1 ' send byte to PolStar
 RETURN

' ---

' Use: SETUP_XP trisBits
' -- setup TRIS bits for hacker expansion port

SETUPXP:
 tmpB1 = __PARAM1 ' save new setup
 tmpB2 = TRIS_A ' get current TRISA copy
 tmpB2.0 = tmpB1.0 ' RA.0 (XP0)
 tmpB2.1 = tmpB1.1 ' RA.1 (XP1)
 TRIS_A = tmpB2
 tmpB2 = TRIS_B ' get current TRISB copy
 tmpB2.1 = tmpB1.2 ' RB.1 (XP2)
 tmpB2.0 = tmpB1.3 ' RB.2 (XP3)
 tmpB2.7 = tmpB1.4 ' RB.7 (XP4)
 tmpB2.6 = tmpB1.5 ' RB.6 (XP5)
 tmpB2.4 = tmpB1.6 ' RB.4 (XP6)
 tmpB2.5 = tmpB1.7 ' RB.5 (XP7)
 TRIS_B = tmpB2
 RETURN

' ---

' Use: WR_XPORT byteVal
' -- writes "byteVal" to hacker expansion port

WRXPORT:
 tmpB1 = __PARAM1
 XP0 = tmpB1.0 ' move bits to x-port
 XP1 = tmpB1.1
 XP2 = tmpB1.2
 XP3 = tmpB1.3
 XP4 = tmpB1.4
 XP5 = tmpB1.5
 XP6 = tmpB1.6
 XP7 = tmpB1.7
 RETURN

 Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

' ---

' Use: byteVal = RDXPORT

RDXPORT:
 tmpB1.0 = XP0 ' get bits from x-port
 tmpB1.1 = XP1
 tmpB1.2 = XP2
 tmpB1.3 = XP3
 tmpB1.4 = XP4
 tmpB1.5 = XP5
 tmpB1.6 = XP6
 tmpB1.7 = XP7
 RETURN tmpB1 ' return to caller

' ---

' Use: MULT val1, val2
' -- if mixed (byte and word), word must be specified first

MULT:
 IF __PARAMCNT = 2 THEN
 tmpW1 = __PARAM1
 tmpW2 = __PARAM2
 ENDIF
 IF __PARAMCNT = 3 THEN
 tmpW1 = __WPARAM12
 tmpW2 = __PARAM3
 ENDIF
 IF __PARAMCNT = 4 THEN
 tmpW1 = __WPARAM12
 tmpW2 = __WPARAM34
 ENDIF

 tmpW1 = tmpW1 * tmpW2
 RETURN tmpW1

' ---

' Use: DIV val1, val2
' -- if mixed (byte and word), word must be specified first

DIV:
 IF __PARAMCNT = 2 THEN
 tmpW1 = __PARAM1
 tmpW2 = __PARAM2
 ENDIF
 IF __PARAMCNT = 3 THEN
 tmpW1 = __WPARAM12
 tmpW2 = __PARAM3

Column #139: Hacking the Parallax GPS Module

The Nuts and Volts of BASIC Stamps 2006

 ENDIF
 IF __PARAMCNT = 4 THEN
 tmpW1 = __WPARAM12
 tmpW2 = __WPARAM34
 ENDIF

 tmpW1 = tmpW1 / tmpW2
 RETURN tmpW1

' ---

' Use: wordVal = BUF2DEC start, width
' -- converts "width" chars at "start" to word

BUF2DEC:
 bufPntr = __PARAM1 ' start of field
 tmpB5 = __PARAM2 ' number of digits
 tmpW3 = 0 ' result output
 IF tmpB5 >= 1 THEN
 IF tmpB5 <= 5 THEN
 DO
 tmpW3 = MULT tmpW3, 10
 tmpB6 = GETBUF bufPntr
 tmpB6 = tmpB6 - "0"
 tmpW3 = tmpW3 + tmpB6
 INC bufPntr
 DEC tmpB5
 LOOP UNTIL tmpB5 = 0
 ENDIF
 ENDIF
 RETURN tmpW3

' ===
' User Data
' ===

Pgm_ID:
 DATA "0.2", 0

