
Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

Column #129, January 2006 by Jon Williams:

PlayStation Robot Controller

The other day my boss, Ken, pointed out that I have written over six year’s worth of columns
for Nuts & Volts. Wow. Aren’t you guys tired of me yet? (Okay, don’t answer that question)
For all the columns I’ve written, clearly one of the top three in reader interest was called
“PlayStation Control Redux” (September 2003) where we delved more deeply into the
PlayStation controller protocol work started by Aaron Dahlen. Well, between then and now
Parallax released the SX/B compiler for the SX micro and the speed issues we dealt with
when using a BASIC Stamp are no longer issues. That, and Ken is building a cool new
treaded robot that might need a full featured control device – let’s hack a PlayStation
controller for him and let him drive that dude around, shall we?

During a recent conversation with a Parallax EFX customer I was asked how difficult it is to
learn SX assembly language – my friend is interested in building custom accessory devices
for his props and holiday displays using the SX28. He was actually quite surprised to learn
that, to date, all of the EFX accessory products (RC-4, DC-16, AP-8) that use the SX are
actually programmed in SX/B – I know because I’m part of the team that designed those
products and wrote a few of the programs myself.

Why did I use SX/B? Well, I’m part of the SX/B development team so I’m really
comfortable with it and – here’s the kicker – I still haven’t taken the time to commit to
learning enough assembly programming to write full-blown applications. What it actually
comes down to is a lack of patience on my part, and with SX/B I really don’t need to be; I can
write very PBASIC-like code that gets compiled. I get the benefits of high-level
programming with the execution speed of assembly language.

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

That said, SX/B is a not a compiler in the terms that we typically think about, that is, SX/B
doesn’t optimize and automatically remove redundant code. Why not? The reason is that
Parallax created SX/B so that those interested in assembly could learn from it – that’s very
tough to do when one looks at the assembly output of an optimized compiler. With SX/B you
can see the assembly output from your high-level code (which gets included in the comments)
and see how the various instructions work “under the hood.”

So does that mean SX/B is inefficient? No, I don’t think so; it is what it is: an inline (some
call “macro”) compiler. The code we write gets compiled inline as it appears in the source
file. If, for example, we have two consecutive PAUSE instructions, the code to execute
PAUSE will be expanded twice – and this does use more code space. This is not a problem if
we understand and design around it, and that’s really what I’m going to focus on in this
month’s column.

If you look at enough of my SX/B programs you’ll notice that they are all similarly structured
and, in fact, I reuse a lot of the same subroutines. The reason is this: By keeping my code
consistent I can follow my own programs and get back into them more quickly after a break
and, here’s the real import part for SX/B, by putting “big” (lots of assembly code required)
instructions into a subroutine those instructions only get expanded once and I’m able to
conserve code space. The additional benefit to putting these commands into subroutines is
that we can add our own (even optional) features to the routines. We'll see how just a bit
later.

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

Figure 129.1: SX28 PlayStation Controller Schematic

PlayStation Controller Protocol
It turns out that the PlayStation controller is actually very easy to connect to a microcontroller
– in fact, it behaves just like a big shift register. The difference is that it has separate data in
(called Command) and data out (called Data) lines. When we used the BASIC Stamp
SHIFTOUT and SHIFTIN were used, but this created a problem with the last bit of data when
using an analog controller. What we ended up doing was synthesizing a routine that could
send and receive bytes at the same time, but in PBASIC that’s a little on the slow side. Not so
with the SX, in fact we now have to consider speed for the other side so that we don’t do
things too quickly.

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

Figure 129.2 shows the signal timing and relationships between the host and the PlayStation
controller. Communication is initiated by bringing the PsxAttn (attention) pin low. After a
20 microsecond delay the bits are clocked in and out, with everything happening based on the
falling edge of the clock signal.

Figure 129.2 Signal Timing between Host and PlayStation Controller

From a programming standpoint we need to put a bit (starting with the LSB) on the PsxCmd
pin before pulling the clock line low. After the clock has been pulled low and we allow a bit
of setup time we can read a bit from the PsxData pin. We’ll get into the specific code
mechanics a little later.

Figure 129.3 shows the relationship of input and output bytes. The host transmits $01 (start)
and $42 (get data), the PlayStation controller sends back its type, $5A (ready), then two
(digital controller) or six data bytes (analog controller). Note that the controller transmits its
type while the host is sending the $42 byte. What we’re going to do as we develop this
program is create a routine that does the equivalent of SHIFTOUT and SHIFTIN – but at the
same time.

Figure 129.3: Relationship of Input and Output Bytes

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

Figure 129.4: Composition of Data Byte Packets

The Tao of SX/B
Okay, I know that’s a bit of a cheeky section title, since almost every programming language
can be manipulated in any way by an experienced programmer. So this is my Tao of SX/B, at
least for serial accessory devices. Let’s start at the top.

One of the features I like best about SX/B is the ability to define subroutines with the SUB
keyword. This serves two important functions: 1) It causes the compiler to create a jump
table that lets us put the subroutine code anywhere in memory (remember, in the SX,
subroutines usually have to be in the top half of a code page unless a jump table is used) and
2) It lets us tell the compiler how many parameters are used by the subroutine. This allows
the compiler do syntax checks on our custom routines – very handy! Here are the subroutines
used in the PlayStation Helper module:

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

WAIT_US SUB 1, 2
WAIT_MS SUB 1, 2
RX_BYTE SUB
TX_BYTE SUB 1
TX_OUT SUB 1, 2
READ_PSX SUB
PSX_SHIFTIO SUB 0, 1

Here’s a secret: Only the last two subroutines are specific to this project; all the others form
the core of most of the serial accessory projects I developed using the SX. Looking at the
code you’ll see that each subroutine has a name, followed by the keyword SUB, and then
information on parameters used by each subroutine. Notice that not every subroutine requires
parameters sent to it (like RX_BYTE) and most actually have a variable number of
parameters. WAIT_US (a shell for PAUSEUS), for example, requires one parameter and can
take two.

With the subroutines defined we can jump into the main body of the program. As with
similar devices, the PlayStation Helper chip is going to wait on a specific command header
from the host and respond as instructed. We’re going to use open-baudmode style serial
communications with this product so that it’s compatible with other serial accessories. By
doing that we could connect this device to a BASIC Stamp using the same serial line that
commands a Parallax Servo Controller (PSC). With a BASIC Stamp, a PSC, and the
PlayStation Helper you could put together a very cool robot.

The Parallax AppMod protocol is really more of a configuration than a defined protocol – as I
just stated it uses open-baudmode communications and a text header that starts with the “!”
character. For example, when we want to send a command to the PSC we use the header
“!SC” at the beginning of each command message. Let’s be logical, shall we, and use “!PSX”
as the header for our PlayStation Helper. Okay, then, let’s wait for the header:

Main:
 char = RX_BYTE
 IF char <> "!" THEN Main
 char = RX_BYTE
 IF char <> "P" THEN Main
 char = RX_BYTE
 IF char <> "S" THEN Main
 char = RX_BYTE
 IF char <> "X" THEN Main

You see, I told you it was simple. We grab one character at a time, compare it to the header
sequence and jump back to Main if anything is out of whack. Now, if you’re new to SX/B

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

you’re probably wondering how this can work, that is, having a comparison between
incoming serial bytes.

This works fine because the SX is running assembly language and even at the 4 MHz clock
we’re using each instruction only takes 0.25 microseconds! At 38.4k baud, each bit is 26
microseconds long so there is plenty of time during the stop bit to get the comparison done.
Remember, this code gets compiled to assembly language. Here’s a small section of the
compiled code:

Main:
 CALL @__RX_BYTE
 MOV char, W
 CJNE char, #"!", @Main

The first line calls the RX_BYTE subroutine – note that @ is used so the subroutine call can
cross code pages. On return, the value that was received is retrieved from the W (working)
register; this takes one cycle. The comparison is just one line of assembly code, but is a
compound statement that takes either four or six cycles, depending on the comparison result.
Still, in the worst case we’ve only consumed seven cycles – 1.75 microseconds – during the
26 microsecond window between bytes. I’m not suggesting we go crazy and try to squeeze a
whole lot more (in actual fact a few more cycles are consumed with the call to and return
from the RX_BYTE subroutine), but I want you to rest easy that when compiled we can do
the comparison as shown without any fear of missing the next serial byte.

Okay, speaking of serial bytes, let’s look at the code that handles that:

RX_BYTE:
 SERIN Sio, Baud, temp1
 IF temp1 >= "a" THEN
 IF temp1 <= "z" THEN
 temp1 = temp1 - $20
 ENDIF
 ENDIF
 RETURN temp1

This subroutine actually serves two purposes: it receives the serial byte and if the byte is a
lowercase letter it gets converted to uppercase. This subroutine points out one of the changes
in SX/B as it has matured and developed an expanding customer base, specifically the ability
to return a value to the subroutine caller. As we saw in the compiled code above, the W
register is used as the mechanism for handling the return value.

Let me emphasize on final time the reason for this subroutine: SERIN is a complex statement
that requires several line of assembly code. If we were to use SERIN every place in the

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

program that required serial input we would use a lot of code space with redundant code.
And, by encapsulating SERIN in a subroutine, we’re able to add the lowercase-to-uppercase
conversion feature.

Now that we have the header, the next step is to process receive and process the command
byte sent by the host controller:

Get_Command:
 char = RX_BYTE
 IF char = "V" THEN Show_Version
 IF char = "T" THEN Get_Type
 IF char = "S" THEN Get_Status
 IF char = "B" THEN Get_Buttons
 IF char = "J" THEN Get_Joysticks
 IF char = "C" THEN Config_IoPort
 IF char = "W" THEN Write_IoPort
 IF char = "R" THEN Read_IoPort
 GOTO Main

After receiving the command byte the program simply compares it to the list of commands
available to the program. You may think that LOOKDOWN and BRANCH would be more
efficient, but in practice it doesn’t use any less code (after being compiled) and it’s not quite
as easy to follow in my book.

The first command is “V” for version; this is a good idea to include in your designs,
especially if you’re selling them as products and make incremental improvements. Providing
a version number allows the end user to design around the features available in the product he
has. On receiving the “V” command the PlayStation Helper will send back a three-byte
version string. Here’s the top level code:

Show_Version:
 WAIT_MS 1
 TX_OUT Version
 GOTO Main

There’s no big mystery here; the only thing you may wonder about is the WAIT_MS 1 line.
This inserts a one millisecond delay before returning the version string so that the BASIC
Stamp can load up its SERIN instruction to receive the data from the SX. Here’s the code for
WAIT_MS:

WAIT_MS:
 temp1 = __PARAM1
 IF __PARAMCNT = 1 THEN
 temp2 = 1

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

 ELSE
 temp2 = __PARAM2
 ENDIF
 IF temp1 > 0 THEN
 IF temp2 > 0 THEN
 PAUSE temp1 * temp2
 ENDIF
 ENDIF
 RETURN

This is a subroutine that can handle a variable number of parameters (one or two). The first
parameter is required and is the base delay time in milliseconds. If a second parameter is
provided this is used as a multiplier, otherwise the multiplication factor is set to one. The
internal variable, __PARAMCNT, is used to check the number of parameters sent to the
subroutine, and as you can see it gives us a lot of flexibility. Finally, we check to see that
neither parameter was set to zero and do the delay using the version of PAUSE that uses the
multiplication of two bytes.

After the delay we send the version string back to the host with TX_OUT. Let’s look at that
code:

TX_OUT:
 temp3 = __PARAM1
 IF __PARAMCNT = 2 THEN
 temp4 = __PARAM2
 DO
 READ temp4 + temp3, temp5
 IF temp5 = 0 THEN EXIT
 TX_BYTE temp5
 INC temp3
 temp4 = temp4 + Z
 LOOP
 ELSE
 TX_BYTE temp3
 ENDIF
 RETURN

TX_OUT is quite flexible in that it can be used to transmit a single byte or multi-byte strings
(stored as z-strings). Again we use __PARAMCNT to determine the behavior of the
subroutine. When a single byte is passed there will only be one parameter. When a string is
passed to the subroutine two parameters are required due to the 12-bit size of the string
address. In the case of returning the version to the host two parameters will be passed to the
subroutine: the base and offset address values of that string.

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

It’s important to note that strings can be handled in two ways. For the version string we’re
going to store it in a DATA statement like this:

Version:
 DATA "0.1", 0

When we use a stored string like this we must append the zero terminator ourselves and we’ll
pass the string label to the subroutine – this gets resolved by the compiler to the base and
offset memory locations. The nice thing about this subroutine is that it also lets us send inline
strings like this:

 TX_OUT "Nuts & Volts rocks!"

When we pass an inline string the compiler adds the zero-terminator for us. Note that if we're
going to send the same string more than once then the most efficient method is to store the
string in a DATA statement.

Getting back to TX_OUT we see that it uses a DO-LOOP construct to transmit the string.
READ is used to retrieve each character from memory and if it's zero we're done (hence the
use of EXIT). Remember that SX/B variables are bytes only but we're using a 12-bit address
for the string characters. What this means is that when we increment the offset value we need
to update the base value on a roll-over. This is actually quite easy to do as the Z flag will be
set (to 1) when we increment the offset from 255 to 0 – all we have to do is add the Z bit to
the base after incrementing the offset. In most cases the Z bit will be zero but when we have a
roll-over it will be set to 1 and the base will be updated properly.

Note that TX_OUT calls the TX_BYTE subroutine. This one is really easy; it simply makes a
copy of the byte passed to it and then transmits it with SEROUT on the specified port at the
program baud rate:

TX_BYTE:
 temp1 = __PARAM1
 SEROUT Sio, Baud, temp1
 RETURN

In actual fact, TX_OUT started as TX_STR (transmit string) and always required two bytes.
It was a simple matter to update the subroutine to handle one byte or two so the main code
only ever needs to call TX_OUT. Yes, we could use TX_BYTE, but if we made a change
from sending a byte to sending a string we'd also have to change which subroutine gets used.
By only using TX_OUT in the main body of our program we never have to worry about that.

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

So far the program has been pretty generic – and that's the point. What I'm suggesting is that
we can use this framework for a whole host of serial accessories that are useful for BASIC
Stamp (and other microcontroller) projects. As I indicated earlier, this framework runs in the
RC-4, DC-16, and AP-8 products that are part of the Parallax EFX line; you can do it too.

Let's get into the PlayStation-specific code. Remember that the PlayStation controller acts
like a big, smart shift register, and it can receive and transmit data at the same time. Since
SHIFTOUT and SHIFTIN do only one thing each, let's create a subroutine that handles the
full-duplex nature of the controller.

PSX_SHIFTIO:
 IF __PARAMCNT = 1 THEN
 temp3 = __PARAM1
 ELSE
 temp3 = 0
 ENDIF
 temp4 = 0
 FOR temp5 = 1 TO 8
 PsxCmd = temp3.0
 temp3 = temp3 >> 1
 PsxClock = 0
 WAIT_US 5
 temp4 = temp4 >> 1
 temp4.7 = PsxData
 PsxClock = 1
 WAIT_US 5
 NEXT
 RETURN temp4

This is definitely the trickiest subroutine in the program in that it can send a byte to the
controller, it can get a byte from the controller, and it can do both at the same time. We'll see
all three uses of the subroutine's capabilities in just a bit.

When the subroutine is called with an output parameter that value is copied into temp3 – if
not provided, temp3 is set to zero as this is the output byte to the controller. Before entering
the transmission loop, temp4 gets cleared; this is the input byte from the controller and will be
passed back to the caller. A FOR-NEXT loop is used to send and receive eight bits, and the
transmission – in PBASIC terms – is LSBFIRST. The first step is to put the LSB (temp3.0)
onto the PsxCmd pin and then pull the clock line low to output that bit. Note that we shift the
next bit right before the clock to add a bit of timing delay before the clock change and to have
the next bit in place for the next iteration of the loop.

After the clock line goes low the controller will output a data bit (LSBFIRST) onto the
PsxData pin. Here's where things can look a little confusing at first. We start by shifting

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

temp4 to the right by one bit and then placing the data line bit into temp4.7. We have to do
this because we ultimately want the first bit read to end up in temp4.0 – this will in fact
happen after eight iterations of the loop.

One thing of note is the clock timing. I don't actually have a PlayStation console but I met a
guy named Jim in the Parallax user forums who happened to borrow one from his nephew.
He connected a 'scope and told me that the high and low timing of the clock line was about
five microseconds. That's what I've been using and have never had a problem – I suspect it's
probably a bit on the generous side but I see no need to push it. At this speed it takes just
about 5 milliseconds to get the entire packet from the controller.

And here's the code that does just that:

READ_PSX:
 PsxAttn = 0
 WAIT_US 20
 PSX_SHIFTIO $01
 psxId = PSX_SHIFTIO $42
 psxStatus = PSX_SHIFTIO
 psxThumb1 = PSX_SHIFTIO
 psxThumb2 = PSX_SHIFTIO
 IF psxId = $73 THEN
 psxJoyRX = PSX_SHIFTIO
 psxJoyRY = PSX_SHIFTIO
 psxJoyLX = PSX_SHIFTIO
 psxJoyLY = PSX_SHIFTIO
 ELSE
 psxJoyRX = $80
 psxJoyRY = $80
 psxJoyLX = $80
 psxJoyLY = $80
 ENDIF
 PsxAttn = 1

 psxThumb1 = ~psxThumb1
 psxThumb2 = ~psxThumb2
 RETURN

This routine starts by pulling the PsxAttn line low to activate the controller. According to
Jim, the PlayStation console waits 20 microseconds before transmitting the start byte ($01) so
I've put that into my code. For those of you that have used the BASIC Stamp to connect to
the PlayStation controller we need to keep in mind that it takes at least 100 microseconds to
load each instruction so there's a lot of built-in delays. Since we're dealing with compiled
code we have to manually put those delays in. The WAIT_US subroutine is identical to the

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

WAIT_MS routine that we looked at earlier, the difference being that it uses PAUSEUS
instead of PAUSE.

The READ_PSX subroutine shows the flexibility that we built into the PSX_SHIFTIO
routine. We start by sending $01 – notice that we don't care about anything that gets returned
so there is no assignment. The next line, however, sends $42 (get data) with PSX_SHIFTIO
and assigns the return value to psxId. This tells us what kind of controller is connected; it will
usually be $41 for digital controllers or $73 for analog controllers. After the ID byte the
controller transmits a packet header of $5A. After this header controller sends two bytes of
button data and, if in analog mode, four bytes of joystick data.

I happen to have Sony analog controller that can be set to digital or analog mode. I made a
decision for this subroutine to stuff the joystick bytes with $80 if the controller is digital or set
to digital mode. The value $80 represents the center position of each joystick axis and allows
me to simplify my BASIC Stamp programs. If we don't include this conditional code then
each joystick value will be set to $FF (extreme right or down position) when in digital mode,
and in my mind this is not the best value to return to the host.

Finally, the subroutine inverts the button bits so that a pressed button bit has a value of 1
when sent back to the BASIC Stamp.

Okay, now that we can read the controller, the command sections that handle the various
requests for data are a breeze.

Get_Status:
 WAIT_MS 1
 READ_PSX
 TX_OUT psxThumb1
 TX_OUT psxThumb2
 TX_OUT psxJoyRX
 TX_OUT psxJoyRY
 TX_OUT psxJoyLX
 TX_OUT psxJoyLY
 GOTO Main

Get_Buttons:
 WAIT_MS 1
 READ_PSX
 TX_OUT psxThumb1
 TX_OUT psxThumb2
 GOTO Main

Get_Joysticks:
 WAIT_MS 1
 READ_PSX

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

 TX_OUT psxJoyRX
 TX_OUT psxJoyRY
 TX_OUT psxJoyLX
 TX_OUT psxJoyLY
 GOTO Main

As you can see, all of this code is very straightforward and gives us the ability to request from
the PlayStation Helper module just what we need. Figure 129.5 shows the output from a
simple BASIC Stamp controller that retrieves and displays the controller values (it's included
in the download files).

Figure 129.5: PSX Helper Test Output

Since this is designed to be a robot controller let's take advantage of those spare pins on the
SX28. By using the "C," "W," and "R" commands we can configure, write, and read the RC
port. Just one caveat: the SX uses 0 to indicate an output bit, and 1 to indicate an input bit –
this is exactly opposite of what we do in the BASIC Stamp (DIRS register). Knowing this we
will send BASIC Stamp style data to the PlayStation Helper module and invert the bits before
assigning the configuration value to the TRIS register. Here's the code for handling the extra
I/O port:

Config_IoPort:
 char = RX_BYTE

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

 PlpIO = char
 char = ~char
 TrisIO = char
 GOTO Main

Write_IoPort:
 IoPort = RX_BYTE
 GOTO Main

Read_IoPort:
 WAIT_MS 1
 TX_OUT ~IoPort
 GOTO Main

One of the things that you'll notice about the Config_IoPort section is that the SX pull-ups are
activated on any pin that is made an input. Now this means that inputs will be active-low, so
we'll invert the bits sent back to the BASIC Stamp to make them look active-high – just as we
did with the controller button bits.

What about Force Feedback?
To be honest, I was really hoping to conquer the force feedback motor control before using
the SX with the PlayStation controller; sadly, every one of my attempts has failed. I have
scoured the Internet for information and while there is some information out there, it is
usually incomplete and not documented. What I'm going to be forced to do, I think, is rent or
borrow a console and connect a logic analyzer to the PsxAttn, PsxClock, PsxCmd, and
PsxData lines to see exactly what happens when the motors are activated. Unfortunately, my
friend Jim doesn't have a multi-channel logic analyzer and couldn’t do that for me – and it's
not something that can be done with a two-channel scope; one needs to know what the
console and controller are doing and in relation to each other.

I tell you what… if you have a console and are able to do that analysis for me I will send you
a shiny new Parallax Professional Development Board. Here's the offer: the first person that
sends me working code, or enough information that I can add working code (that is,
independent motor control through the seria link) to this project wins the PDB.

Until next time – Happy Stamping!

Project Code
' ===
'
' File....... PSX_Test.BS2
' Purpose.... Test program for SX-based PSX Helper module
' Author..... Jon Williams -- Parallax, Inc.
' E-mail.... jwilliams@parallax.com

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

' Started....
' Updated.... 19 NOV 2005
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
'
' Simple test program for PlayStion Helper chip.

' -----[I/O Definitions]---

Sio PIN 15

' -----[Constants]---

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T1200 CON 813
 T2400 CON 396
 T4800 CON 188
 T9600 CON 84
 T19K2 CON 32
 TMidi CON 12
 T38K4 CON 6
 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T4800 CON 500
 T9600 CON 240
 T19K2 CON 110
 TMidi CON 60
 T38K4 CON 45
 #CASE BS2PX
 T1200 CON 3313
 T2400 CON 1646
 T4800 CON 813
 T9600 CON 396
 T19K2 CON 188
 TMidi CON 108
 T38K4 CON 84
#ENDSELECT

SevenBit CON $2000
Inverted CON $4000
Open CON $8000

Baud CON Open + T38K4

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

' -----[Variables]---

id VAR Byte(3)
type VAR Byte

psx VAR Byte ' psx data
psxThumb1 VAR psx ' thumb buttons
psxThumb2 VAR Byte ' thumb buttons
psxJoyRX VAR Byte ' r joystick - X axis
psxJoyRY VAR Byte ' r joystick - Y axis
psxJoyLX VAR Byte ' l joystick - X axis
psxJoyLY VAR Byte ' l joystick - Y axis

idx VAR Byte
xport VAR Byte

' -----[Initialization]--

Reset:
 DEBUG CLS
 PAUSE 100

' -----[Program Code]--

Main:
 DEBUG HOME

 SEROUT Sio, Baud, ["!PSX", "V"] ' get helper version
 SERIN Sio, Baud, [STR id\3]
 DEBUG "PSX Helper Version = ", STR id\3, CR

 SEROUT Sio, Baud, ["!PSX", "T"] ' get helper type (mode)
 SERIN Sio, Baud, [type]
 DEBUG "PSX Helper Type = ", IHEX2 type, CR, CR

 SEROUT Sio, Baud, ["!PSX", "S"] ' get PSX status
 SERIN Sio, Baud, [STR psx\6]

 DEBUG "Btns", TAB, BIN8 psxThumb2, BIN8 psxThumb1, CR,
 "JoyRX", TAB, DEC psxJoyRX, CLREOL, CR,
 "JoyRY", TAB, DEC psxJoyRY, CLREOL, CR,
 "JoyLX", TAB, DEC psxJoyLX, CLREOL, CR,
 "JoyLY", TAB, DEC psxJoyLY, CLREOL, CR

 GOTO Main

' -----[Subroutines]---

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

' ===
'
' File...... PSX_EZ.SXB
' Purpose... Playstation Controller Interface for the BASIC Stamp
' Author.... Jon Williams -- Parallax, Inc.
' E-mail.... jwilliams@parallax.com
' Started...
' Updated... 19 NOV 2005
'
' ===

' ---
' Program Description
' ---
'
' Connects a Sony Playstation game controller to the BASIC Stamp using a
' single serial wire and the Parallax AppMod protocol.
'
' Even though the program runs at 4 MHz an external resonator must be used
' as the internal 4 MHz source is not accurate enough for serial
' communications.

' ---
' Device Settings
' ---

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX, BOR42
FREQ 4_000_000
ID "PSX v0.1"

' ---
' IO Pins
' ---

Sio VAR RA.0 ' bi-directional serial

PsxAttn VAR RB.0 ' attention
PsxClock VAR RB.1 ' clock to PSX
PsxCmd VAR RB.2 ' command bits to PSX
PsxData VAR RB.3 ' data bits from PSX

IoPort VAR RC
TrisIO VAR TRIS_C
PlpIO VAR PLP_C

' ---
' Constants
' ---

Baud CON "OT38400" ' bi-directional serial

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

' ---
' Variables
' ---

char VAR Byte ' serial I/O byte
idx VAR Byte ' loop control

psxID VAR Byte ' controller ID
psxStatus VAR Byte ' status ($5A)
psx VAR Byte(6) ' psx data
psxThumb1 VAR psx(0) ' thumb buttons
psxThumb2 VAR psx(1) ' thumb buttons
psxJoyRX VAR psx(2) ' r joystick - X axis
psxJoyRY VAR psx(3) ' r joystick - Y axis
psxJoyLX VAR psx(4) ' l joystick - X axis
psxJoyLY VAR psx(5) ' l joystick - Y axis

temp1 VAR Byte ' subroutine work vars
temp2 VAR Byte
temp3 VAR Byte
temp4 VAR Byte
temp5 VAR Byte

' ===
 PROGRAM Start
' ===

' ---
' Subroutine Declarations
' ---

WAIT_US SUB 1, 2 ' delay in microseconds
WAIT_MS SUB 1, 2 ' delay in milliseconds
RX_BYTE SUB ' receive a serial byte
TX_BYTE SUB 1 ' transmit a serial byte
TX_OUT SUB 1, 2 ' transmit byte or string
READ_PSX SUB ' read PSX joystick
PSX_SHIFTIO SUB 0, 1 ' send/get PSX byte

' ---
' Program Code
' ---

Start:
 PLP_A = %0001 ' configure pull-ups
 PLP_B = %00001111
 PLP_C = %00000000

 RB = %00000111 ' initialize pins high
 TRIS_B = %11111000 ' make outputs

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

Main: ' wait for header
 char = RX_BYTE
 IF char <> "!" THEN Main
 char = RX_BYTE
 IF char <> "P" THEN Main
 char = RX_BYTE
 IF char <> "S" THEN Main
 char = RX_BYTE
 IF char <> "X" THEN Main

Get_Command:
 char = RX_BYTE ' get command byte
 IF char = "V" THEN Show_Version
 IF char = "T" THEN Get_Type
 IF char = "S" THEN Get_Status
 IF char = "B" THEN Get_Buttons
 IF char = "J" THEN Get_Joysticks
 IF char = "C" THEN Config_IoPort
 IF char = "W" THEN Write_IoPort
 IF char = "R" THEN Read_IoPort
 GOTO Main

Show_Version:
 WAIT_MS 1 ' give host time to setup
 TX_OUT Version ' send version string
 GOTO Main

Get_Type:
 WAIT_MS 1 ' give host time to setup
 READ_PSX ' read PSX inputs
 TX_OUT psxID ' send id byte to host
 GOTO Main

Get_Status: ' returns buttons and joysticks
 WAIT_MS 1 ' give host time to setup
 READ_PSX ' read PSX inputs
 TX_OUT psxThumb1 ' send buttons data
 TX_OUT psxThumb2
 TX_OUT psxJoyRX ' send joystick data
 TX_OUT psxJoyRY
 TX_OUT psxJoyLX
 TX_OUT psxJoyLY
 GOTO Main

Get_Buttons:
 WAIT_MS 1 ' give host time to setup
 READ_PSX ' read PSX inputs
 TX_OUT psxThumb1 ' send buttons data
 TX_OUT psxThumb2
 GOTO Main

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

Get_Joysticks:
 WAIT_MS 1 ' give host time to setup
 READ_PSX ' read PSX inputs
 TX_OUT psxJoyRX ' send joystick data
 TX_OUT psxJoyRY
 TX_OUT psxJoyLX
 TX_OUT psxJoyLY
 GOTO Main

Config_IoPort:
 char = RX_BYTE ' get config bits
 PlpIO = char ' pull-up inputs only
 char = ~char ' invert bits
 TrisIO = char
 GOTO Main

Write_IoPort:
 IoPort = RX_BYTE ' get new port bits
 GOTO Main

Read_IoPort:
 WAIT_MS 1 ' give host time to setup
 TX_OUT ~IoPort ' send current port bits
 GOTO Main

' ---
' Subroutine Code
' ---

' Use: WAIT_US microseconds {, multiplier}
' -- multiplier is optional

WAIT_US:
 temp1 = __PARAM1 ' get microseconds
 IF __PARAMCNT = 1 THEN ' if no multiplier
 temp2 = 1 ' set to 1
 ELSE ' else
 temp2 = __PARAM2 ' get multiplier
 ENDIF
 IF temp1 > 0 THEN ' no delay if either 0
 IF temp2 > 0 THEN
 PAUSEUS temp1 * temp2 ' do the delay
 ENDIF
 ENDIF
 RETURN

' ---

' Use: WAIT_MS milliseconds {, multiplier}
' -- multiplier is optional

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

WAIT_MS:
 temp1 = __PARAM1 ' get milliseconds
 IF __PARAMCNT = 1 THEN ' if no multiplier
 temp2 = 1 ' set to 1
 ELSE ' else
 temp2 = __PARAM2 ' get multiplier
 ENDIF
 IF temp1 > 0 THEN ' no delay if either 0
 IF temp2 > 0 THEN
 PAUSE temp1 * temp2 ' do the delay
 ENDIF
 ENDIF
 RETURN

' ---

' Use: aByte = RX_BYTE
' -- receives one byte from serial I/O pin
' -- converts lowercase letters to uppercase

RX_BYTE:
 SERIN Sio, Baud, temp1
 IF temp1 >= "a" THEN ' lowercase?
 IF temp1 <= "z" THEN
 temp1 = temp1 - $20 ' yes, convert to uppercase
 ENDIF
 ENDIF
 RETURN temp1 ' return byte to caller

' ---

' Use: TX_BYTE aByte
' -- transmits one byte to serial I/O pin

TX_BYTE:
 temp1 = __PARAM1 ' copy outgoing byte
 SEROUT Sio, Baud, temp1 ' send it
 RETURN

' ---

' Use: TX_OUT [byte | string | label]
' -- "aByte" is variable or constant byte value
' -- "string" is an embedded literal string
' -- "label" is DATA statement label for stored z-String

TX_OUT:
 temp3 = __PARAM1 ' get byte or string offset
 IF __PARAMCNT = 2 THEN
 temp4 = __PARAM2 ' get string base
 DO

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

 READ temp4 + temp3, temp5 ' read a character
 IF temp5 = 0 THEN EXIT ' if 0, string complete
 TX_BYTE temp5 ' send the byte
 INC temp3 ' point to next character
 temp4 = temp4 + Z ' update base on overflow
 LOOP
 ELSE
 TX_BYTE temp3 ' transmit the byte value
 ENDIF
 RETURN

' ---

' Use: READ_PSX
' -- returns PSX buttons and joystick info

READ_PSX:
 PsxAttn = 0 ' get controller attention
 WAIT_US 20
 PSX_SHIFTIO $01 ' send "start"
 psxId = PSX_SHIFTIO $42 ' send "get data", get ID
 psxStatus = PSX_SHIFTIO ' get status ($5A)
 psxThumb1 = PSX_SHIFTIO ' read buttons
 psxThumb2 = PSX_SHIFTIO
 IF psxId = $73 THEN
 psxJoyRX = PSX_SHIFTIO ' read joysticks
 psxJoyRY = PSX_SHIFTIO
 psxJoyLX = PSX_SHIFTIO
 psxJoyLY = PSX_SHIFTIO
 ELSE
 psxJoyRX = $80 ' force to center value
 psxJoyRY = $80
 psxJoyLX = $80
 psxJoyLY = $80
 ENDIF
 PsxAttn = 1 ' deactivate controller

 ' update buttons to make Stamp-like (active-high)

 psxThumb1 = ~psxThumb1
 psxThumb2 = ~psxThumb2

 RETURN

' ---

' Use: {inByte} = PSX_SHIFTIO {outByte}
' -- sends [optional] "outByte" to PSX
' -- receives [optional] "inByte" from PSX

PSX_SHIFTIO:

Column #129: PlayStation Robot Controller

The Nuts and Volts of BASIC Stamps 2006

 IF __PARAMCNT = 1 THEN
 temp3 = __PARAM1 ' copy output byte
 ELSE
 temp3 = 0
 ENDIF
 temp4 = 0 ' clear input byte
 FOR temp5 = 1 TO 8 ' shift eight bits
 PsxCmd = temp3.0 ' move lsb to Cmd pin
 temp3 = temp3 >> 1 ' shift for next bit
 PsxClock = 0 ' clock the bit
 WAIT_US 5
 temp4 = temp4 >> 1 ' prep for next bit
 temp4.7 = PsxData ' get lsb from Data pin
 PsxClock = 1 ' release clock
 WAIT_US 5
 NEXT
 RETURN temp4

' ===
' User Data
' ===

Version:
 DATA "0.1", 0 ' firmware version

